
Distrib Parallel Databases
DOI 10.1007/s10619-014-7142-1

Approximate querying of RDF graphs via path
alignment

Roberto De Virgilio · Antonio Maccioni ·
Riccardo Torlone

© Springer Science+Business Media New York 2014

Abstract A query over RDF data is usually expressed in terms of matching between a
graph representing the target and a huge graph representing the source. Unfortunately,
graph matching is typically performed in terms of subgraph isomorphism, which makes
semantic data querying a hard problem. In this paper we illustrate a novel technique for
querying RDF data in which the answers are built by combining paths of the underlying
data graph that align with paths specified by the query. The approach is approximate
and generates the combinations of the paths that best align with the query. We show
that, in this way, the complexity of the overall process is significantly reduced and
verify experimentally that our framework exhibits an excellent behavior with respect
to other approaches in terms of both efficiency and effectiveness.

Keywords Path · Graph · RDF · Approximate matching · Alignment

1 Introduction

The Web 3.0 aims at turning the Web into a global knowledge base, where resources are
identified by means of URIs, semantically described with RDF, and related through
RDF statements. This vision is becoming a reality by the spread of Semantic Web

Communicated by Haixun Wang and Jeffrey Xu Yu.

R. De Virgilio (B) · A. Maccioni · R. Torlone
Università Roma Tre, Rome, Italy
e-mail: dvr@dia.uniroma3.it; rde79@yahoo.com

A. Maccioni
e-mail: maccioni@dia.uniroma3.it

R. Torlone
e-mail: torlone@dia.uniroma3.it

123

Distrib Parallel Databases

technology and the availability of more and more linked data sources. However, the
rapid increase of semantic data raises in this context severe data management issues [1,
2]. Among them, a major problem lies in the difficulty for users to find the information
they need in such huge and heterogeneous repository of semantic data.

In this scenario, approaches to approximate query processing are increasingly cap-
turing the attention of researchers [3–7] since they relax the matching between queries
and data, and thus provide an effective support to non-expert users, who are usually
unaware of the way in which data is organized. A support to approximate query
processing is particularly relevant in the context of linked data in which usually data
do not strictly follow the ontology of reference and therefore queries posed against
the schema may not retrieve valid answers.

Since semantic data have a natural representation in the form of a graph, this prob-
lem has been often addressed in terms of approximate matching between a small
graph Q representing the query and a very large graph G representing the database.
The usual approach to this problem is based on searching all the subgraphs of G that
are isomorphic to Q. Unfortunately, this problem is known to be NP-complete [8]
and the problem is even harder if the matching between query and data is approx-
imate. For this reason, the various approaches to approximate query processing on
graph databases rely on heuristics, based on similarity or distance metrics, on the
use of specific indexing structures to reduce the complexity of the problem [4,6,9],
and on fixing some threshold on the maximum number of hops (i.e., node/edge addi-
tions/deletions needed to perfectly match the query graph with the underlying graph
database) that are allowed [5]. Moreover, given that the set of answers to a query is
potentially very large, a mechanism that aims to efficiently select the “best” k answers
is desirable.

In this framework, we propose a novel technique for querying graph-shaped data
in an approximate way that combines a strategy for building possible answers with a
ranking method for evaluating the relevance of the results as soon as they are computed.
The goal is the generation of the best results in the first retrieved answers, thus avoiding
the computation of all the candidate answers. We focus in particular on Basic Graph
Pattern queries [7], which basically express conjunctive queries on graph data models,
over RDF data. RDF is the “de-facto” standard language for the representation of
semantic information: it encodes Web data as a labeled directed graph in which the
nodes represent the resources and values (also called literals), and links represent
semantic relationships between resources. A resource is uniquely identified in the
Semantic Web with a URI.

Example 1 Let us consider the graph Gd depicted in Fig. 1, taken from [4]: it represents
a simplified portion of the GovTrack

1, a database that stores events that occurred
in the US Congress. In RDF graphs, nodes represent RDF classes, literals, or URIs,
whereas edges represent RDF properties.

Assume that a user needs to know all amendments sponsored by Carla Bunes to
a bill on the subject of Health Care that was originally sponsored by a male person.
Queries Q1 and Q2 in Fig. 1 are two possible ways to express this information need.

1 http://www.govtrack.us.

123

http://www.govtrack.us

Distrib Parallel Databases

(a)

(b)

(c)

Fig. 1 An example of data and query graph

They only differ by the presence of an “optional” node and an “optional” edge. While
Q1 has an exact matching over Gd , a perfect matching algorithm would retrieve an
empty result for Q2 over Gd . Conversely, in the context of RDF data, it would be
desirable to provide an answer also to Q2.

Usually, different paths of the query graph denote different relationships between
nodes. For instance, the edges of Q1 indicate that Male is the gender of someone
sponsoring something on the subject Health Care. This simple observation suggests
that query answering can proceed as follows: first, the query is decomposed into a set
of paths that start from a source and end into a sink, then those paths are matched
against the data graph, and finally the data paths that best match the query paths are
combined to generate the answer.

123

Distrib Parallel Databases

In our example, this method would decompose Q1 in the following paths:

pq1 : Carla Bunes
sponsor−−−−→ ?v1

aT o−−→ ?v2
subject−−−−→ Health Care

pq2 : ?v3
sponsor−−−−→ ?v2

subject−−−−→ Health Care

pq3 : ?v3
gender−−−−→ Male

from them, the following paths of Gd would be selected:

pd1 : Carla Bunes
sponsor−−−−→ A0056

aT o−−→ B1432
subject−−−−→ Health Care

pd2 : Pierce Dickens
sponsor−−−−→ B1432

subject−−−−→ Health Care

pd3 : Pierce Dickens
gender−−−−→ Male

and those paths, suitably combined, form the answer to the query.
Therefore, we tackle the problem of querying RDF graphs by finding the best

combinations of the paths of the data graph that best align with the paths of the query
graph. Note that in the example above the result is an exact answer to Q1, but the same
strategy can be adopted to generate approximate answers to queries with a suitable
relaxation of the notion of alignment between graph paths and data paths. Actually,
by using this technique, the same answer of Q1 is returned to the query Q2 in Fig. 1,
for which there is indeed no exact answer.

The query processing phase first extracts all the paths of data graph G that align
with the paths of a query graph Q taking advantage of a special index structure that is
built off-line. During the construction, a score function evaluates the answers in terms
of quality and conformity. The former measures how much the paths retrieved align
with the paths in the query. The latter measures how much, in G, the combination of
paths retrieved is similar to the combination of the paths in the query. Such strategy
exhibits, in the worst case, a polynomial time complexity in the number of nodes of
the data graph and our experiments show that the technique scales seamlessly with the
size of the input.

In order to test the feasibility of our approach, we have developed a system2 for
querying RDF data that implements the above described technique. A number of
experiments over widely used benchmarks have shown that our technique outperforms
other approaches, in terms of both effectiveness and efficiency.

The rest of the paper is organized as follows. In Sect. 2 we introduce some prelimi-
nary notions and definitions. In Sect. 3 we illustrate our strategies for graph matching
over RDF data and in Sect. 5 we present the experimental results. In Sect. 6 we discuss
related work and finally, in Sect. 7, we draw some conclusions and sketch some future
work.

2 A prototype application is available at https://www.dropbox.com/sh/d5u1u24qnyqg18f/7Oefq8-qVa.

123

https://www.dropbox.com/sh/d5u1u24qnyqg18f/7Oefq8-qVa

Distrib Parallel Databases

2 Preliminary issues

This section states the problem we address in this paper and introduces some prelim-
inary notions and terminology. We start with the definition of an answer to a query
in our context and then introduce the data structures and the scoring function that are
used in our technique to build and rank the answers to queries.

2.1 Problem definition

A graph is a 4-tuple G = 〈N , E, L N , L E 〉 where N is a set of nodes, E ⊆ N × N is
a set of ordered pairs of nodes, called edges, and L N and L E are injective functions
that associate an element of a set of node labels�N to each node in N and an element
of a set of edge labels �E to each edge in E , respectively.

We focus our attention on (possibly large) RDF databases, which are conceptually
conceived as labeled directed graphs in which the nodes represent either resources or
values while the edges relate resources to resources and resources to values. We then
introduce the following notion. Let U be a set of URIs and L be a set of literals.

Definition 1 (Data Graph) A data graph Q is a graph where �N = U ∪ L and
�E = U .

Let VAR be a set of variables, denoted by the prefix “?”. A query graph Q is a data
graph in which the nodes can be labeled with variables.

Definition 2 (Query Graph) A query graph Q is a graph where �N = U ∪ L ∪ VAR
and �E = U ∪ VAR.

The evaluation of a query consists on retrieving portions of the data graph that
match with the query graph. This process can be relaxed by assuming that before the
match, the query graph can be slightly transformed, as formalized in the following.

A substitution for a query graph Q is a function that maps the variables in Q to
either URIs or literals. A transformation τ on a query graph is a sequence of the
following basic update operations: node and edge insertion, node and edge deletion,
and labeling modification of both nodes and edges.

Definition 3 (Query Answer) An (approximate) answer to a query graph Q over a
data graph G is a subgraph G ′ of G for which there exists a substitution φ and a
transformation τ such that G ′ = τ(φ(Q)). If τ is the identity function, G ′ is an exact
answer to Q.

In our implementation, the operation of labeling modification of the τ function
is based on standard libraries for testing the equality of values based on traditional
techniques for full text search (such as stemming). This allows the matching between
labels such as fishing, fished, and fish. Since this aspect is outside the scope of the
paper, we will simply assume, hereinafter, that the operation of labeling modification
provides a support for approximate matching between labels and we will use the term
matching between values in this sense, without discussing this aspect further.

123

Distrib Parallel Databases

Intuitively, an answer a1 = τ1(φ1(Q)) is more relevant than another answer a2 =
τ2(φ2(Q)) if τ1 contains a lower number of operations than τ2. Moreover, in the context
of RDF data in which nodes represent concepts and edges represent relationships, it is
useful to associate a weight of relevance to each basic update operation. For instance, it
could be reasonable that the modification of a label is less relevant than a node insertion,
since the latter increases the semantic distance between concepts. Therefore, let ω be
a function that associates a weight of relevance to each basic operation�. We say that
the cost γ of a transformation τ = �1 ◦ . . . ◦ �z is γ (τ) = z ·∑z

i=1(ω(�i)).

Definition 4 (Relevance of an Answer) An answer a1 = τ1(φ1(Q)) is more relevant
than another answer a2 = τ2(φ2(Q)) if γ (τ1) < γ (τ2).

Then, given a data graph G and a query graph Q, we aim at finding the top-k
answers a1, . . . , ak of Q according to their relevance.

2.2 Paths and computed answers

We now introduce a number of notions that, in our approach, are used in the construc-
tion of the answers to a query. Given a graph G, we call start nodes, the nodes of G
with no in-going edges, and end nodes, the nodes of G with no out-going edges.

Basically, a path in a graph G is a sequence of labels from a start node to an end
node of G. In the case of cycles, a path ends, intuitively, just before the repetition of
a node label. Moreover, if there is no start node in G, a path starts from nodes whose
difference between the number of outgoing edges and the number of the incoming
edges is maximal in G. We call these nodes hubs.

Definition 5 (Path) Given a data graph G = 〈N , E, L N , L E 〉, a path is a sequence
p = ln1 − le1 − ln2 − · · · − lek−1 − lnk where: (i) lni = L N (ni), lei = L E (ei), and
ni ∈ N , ei = (ni , ni+1) ∈ E , (ii) n1 is either a start node or, if G has no start nodes, a
hub, and (iii) nk is either an end node or a node such that there is no edge (nk, nk+1)

such that L N (nk+1) (the label of nk) already occurs in p.

In the following, give a path p = ln1 − · · · − lnk , we will call n1 and nk the source
and the sink of p, respectively. The length of a path is the number of nodes occurring
in the path, while the position of a node corresponds to its position among the nodes
in the path.

Let us consider for instance the data graph G in Fig. 2. This graph has two loops,
no start nodes, no end nodes, and one hub (n2). It follows that the paths of G are:
p1 = n2 − e2 − n1, of length 2, and p2 = n2 − e3 − n3 − e4 − n1, of length 3.

Let us now consider the data graph in Fig. 1. It has seven start nodes (the double-
marked nodes) and two end nodes (Health Care and Male, marked in gray). An example
of path is:

pz = JR-sponsor-A1589-aTo-B0532-subject− -HC

where JR and HC denote Jeff Ryser and Health Care, respectively. pz has length 4 and
the node A1589 has position 2. The query Q1 in Fig. 1 has the following paths:

123

Distrib Parallel Databases

Fig. 2 A data graph with loops
and without start nodes

q1 : CB-sponsor-?v1-aTo-?v2-subject-HC

q2 : ?v3-sponsor-?v2-subject-HC

q3 : ?v3-gender-Male

Our technique tries to generate answers to a query Q by applying substitutions and
transformations to paths of Q. This operation is called alignment.

Definition 6 (Alignment) Given a data graph G and a query graph Q an alignment is
a substitution φ and a transformation τ of a path p of Q such that τ(φ(p)) is a path
of G.

We are ready to introduce our notion of computed answer. We say that a set P of
paths of a graph G is a connected component of G if, for each pair of paths p1, p2 ∈ P ,
there is a sequence of paths [p1, . . . , p2] in P in which each element has at least a
node in common with the following element in the sequence.

Definition 7 (Computed Answer) Given a query graph Q, a computed answer of Q
over a data graph G is a set of alignments of all the paths of Q that forms a connected
component of G.

Note that a computed answer of Q over a data graph G is indeed an answer of Q
over G (Definition 3). For this reason, in the following we will often not make any
distinction between answer and computed answer, when it is clear from the context
the notion we are referring to.

2.3 Scoring function

The function score is an approximate implementation of the general notion of rele-
vance (Definition 4) that can be computed in linear time on the size of the data. The
function score simulates the relevance of computed answers ai by taking into account
two different aspects, quality and conformity. The former measures how much the
paths retrieved align with the paths in the query. The latter measures how much, in
ai , the combination of paths retrieved is similar to the combination of the paths in the
query.

123

Distrib Parallel Databases

The first aspect that score considers is the quality of alignment between paths of a
computed answer ai and paths of a query Q as follows:

�(ai , Q) =
∑

q∈Q

(λ(p, q))

In this formula, q is a path of Q, p is the path of ai that originates from an alignment
τ ◦ φ of q (that is, p = τ(φ(q))), and λ is a function defined as follows:

λ(p, q) = (a · n−N + b · n�

N)+ c · n−E + d · n�

E) (1)

In this expression: (i) n−N and n−E are, respectively, the number of nodes and edges
of p that are not present in q, and (ii) n�

N and n�

E are, respectively, the number of
nodes and edges inserted in q by τ . Finally, a, b, c and d are parameters that serve to
take into account the weights of relevance of the operations in τ (see Definition 4).

The second aspect that the score function considers is the conformity between the
combination of the paths in the computed answer and the combination of the paths in
the query. This is evaluated as follows:

Ψ (ai , Q) =
∑

qi ,q j∈Q

(ψ(qi , q j , pi , p j))

In this equation, qi and q j are paths of Q, pi and p j are paths of ai that originate
from alignments τi ◦ φi and τ j ◦ φ j of qi and q j respectively (that is, pi = τi (φi (qi))

and p j = τ j (φ j (q j))), and ψ is a function defined as follows:

ψ(qi , q j , pi , p j) =
{

e · |χ(qi ,q j)|
|χ(pi ,p j)| , if |χ(pi , p j)| > 0

e · |χ(qi , q j)|, if |χ(pi , p j)| = 0

where χ is a function that associates with each pair of paths (p1,p2) the set of nodes in
common between p1 and p2. It follows thatψ(qi , q j , pi , p j) returns the ratio between
the sizes of χ(pi , p j) and χ(qi , q j). Finally, e is a parameter that serves to take into
account the weight of the conformity in score. This is very useful in those applications
where the topology and the interconnections within the answers are very important
(e.g., in social network analysis), sometimes even more than the content of the data
themselves.

The final score function is then computed as:

score(ai , Q) = �(ai , Q)+ Ψ (ai , Q)

It turns out that, with a suitable choice of the parameters in Eq. (1) that considers
the weights of relevance assigned to the basic operations, score is coherent with the
notion of relevance of an answer, that is, for each pair of answers a1 and a2 for a query
Q such that a1 is more relevant than a2 we have that score(a1, Q) < score(a2, Q).

123

Distrib Parallel Databases

Theorem 1 Given a query graph Q and a data graph G, for each pair of com-
puted answers ai and a j for Q over G, if ai is more relevant than a j then we have
score(ai , Q) < score(a j , Q).

Proof Let ��

N , �−N and �×N be basic update operations of node insertion, node
deletion, and labeling modification, respectively. Analogously, �−E ,��

E and �×E
are the respective operations on edges. On these operations, we fix the function ω:
(i) ω(�−N) = a, (ii) ω(��

N) = b, (iii) ω(�−E) = c and (iv) ω(��

E) = d. We con-
sider, as in other works [10], ω(�×N) = 0 and ω(�×E) = 0 because we do not want to
penalize the case where the answer gathers more labels than Q.

Now, let us count the number of basic update operations in a transformation τi for
an answer ai . In this case: n−N and n−E are, respectively, the number of nodes and edges
of ai that are inserted in Q, and n�

N and n�

E are, respectively, the number of nodes
and edges updated in Q by τi .

The cost of γ (τi) is n−N · a + n�

N · b + n−E · c + n�

E · d. Let a1 = τ1(φ1(Q)) and
a2 = τ2(φ2(Q)) be two answers over a query Q. Considering, from Definition 4, that
a1 = �1

1 ◦ . . . ◦ �1
z is more relevant than a2 = �2

1 ◦ . . . ◦ �2
y , we have that

γ (τ1) < γ (τ2) (2)

But for a path p ∈ ai we have that γ (τi) = λ(p, Q). Then, if we generalize Eq. (2)
to all the paths of the two answers a1 and a2 we obtain

�(a1, Q) < �(a2, Q) (3)

that satisfies the hypothesis for the first aspect of score. With score we have an upper
bound of the notion of relevance because if a node has a mismatch in Q and it is
in common among more than one path, then it gets counted more than once in n−N
and n�

N . The conformity Ψ (ai , Q) follows a similar trend than �(ai , Q). In fact,
more are the mismatching elements (i.e. nodes and edges) and lower is the number
of common nodes. Consequently, the number of intersections between the paths in an
answer conforming to the intersections between the paths of the query is also lower.
In our case we have that

Ψ (a1, Q) < Ψ (a2, Q). (4)

Given Eqs. (3) and (4), it follows that score(a1, Q) < score(a2, Q). ��

2.4 Computation of alignments

In order to measure� in score we have to compute alignments between paths in a and
paths in Q. Therefore, a and Q are first decomposed into a set of paths. Then, the paths
of a are aligned against paths of Q. In our example, this method would decompose
Q1 in the following paths:

123

Distrib Parallel Databases

q1 : Carla Bunes
sponsor−−−−→ ?v1

aT o−−→ ?v2
subject−−−−→ Health Care

q2 : ?v3
sponsor−−−−→ ?v2

subject−−−−→ Health Care

q3 : ?v3
gender−−−−→ Male

Now assume that a1 is extracted from Gd that is formed by the following paths:

p1 : Carla Bunes
sponsor−−−−→ A0056

aT o−−→ B1432
subject−−−−→ Health Care

p2 : Pierce Dickens
sponsor−−−−→ B1432

subject−−−−→ Health Care

p3 : Pierce Dickens
gender−−−−→ Male

Note that in the example above the result is an exact answer to Q1, but the same
strategy can be adopted to compare paths that are not exactly matches and thus, with
a lower degree of similarity.

We can now compute the quality of alignments between the paths p in a1 and
the paths q in Q. They are done by inserting, deleting and modifying nodes in q
by proceeding with a scan contrary to the direction of the edges. For instance let us
consider q1 and q2 from the query graph Q1 and the path

p = CB-sponsor-A0056-aTo-B1432-subject-HC

from Gd . We evaluate the score of p with respect to both q1 and q2 as follows

q1 : CB-sponsor-?v1-aTo-?v2-subjec-HC

τ1(φ1(q1)) : CB︸︷︷︸ -sponsor- A0056︸ ︷︷ ︸ -aTo- B1432︸ ︷︷ ︸ -subject-HC

q2 : ?v3-sponsor-?v2-subject-HC

τ2(φ2(q2)) : CB︸︷︷︸ -sponsor- A0056︸ ︷︷ ︸ - aTo-B1432︸ ︷︷ ︸ -subject-HC

In this case q1 requires only a substitution φ on the variables while q2 employs a
transformation τ to insert ATO-B1432 and a substitutionφ on the variables. In the former
case we have λ(p, q1) = (0+0)+ (0+0) = 0, since n−N = n�

N = n−E = n�

E = 0. In
the latter case λ(p, q2) = (0+b)+ (0+d), since n−N = n−E = 0, and n�

N = n�

E = 1.
If we set b = 0.5 and d = 1, we have λ(p, q2) = 1.5 (i.e. p has the best alignment
with q1). In the same way, given

p′ = JR-sponsor-A1589-aTo-B0532-subject-HC

we have λ(p′, q1) = (a + 0) + (0 + 0), since n−V = 1 due to the mismatch between
CB and JR. If we set a = 1, we have that λ(p′, q1) = 1 (i.e. q1 has a better alignment
with p than p′).

It is straightforward to demonstrate that the time complexity of the alignment is
O(I) where I = |p| + |q| is the sum of the nodes and edges of the paths in p and q.

123

Distrib Parallel Databases

3 Path-based query processing

3.1 Overview

Let G be a data graph and Q a query graph on it. The approach is composed of two
main phases: the indexing (done off-line), in which all the paths of G are indexed, and
the query processing (done on-the-fly), where the query evaluation takes place. The
first task will be described in more detail in Sect. 5.

In the second phase, the set PD of the paths of Q are first retrieved by exploiting
the index and then PD is used to retrieve the best answers by adopting a strategy that
guarantees a polynomial time complexity with respect to the size of PD. This task is
performed by means of the following main steps:

Preprocessing Given a query graph Q, in this step the set PQ of all paths of Q is
computed on the fly by traversing Q. We exploit an optimized implementation of
the breadth-first search (BFS) traversal. The elements of PQ are organized in the
the so-called intersection query graph (I G). Nodes of I G are paths of Q while an
edge (qi , q j)means that qi and q j have nodes in common. For instance, referring
to Example 1, PQ consists of the following paths.

q1 : Carla Bunes-sponsor-?v1-aTo-?v2-subject-Health Care
q2 : ?v3-sponsor-?v2-subject-Health Care
q3 : ?v3-gender-Male

The intersection query graph built from q1, q2 and q3 is depicted in Fig. 3. This
data structure keeps track of the fact that q1 and q2 have nodes in common (?v2
and Health Care) and that q2 and q3 have also nodes in common (only ?v3).
Clustering In the second step we build a cluster for each element q of PQ. Then,
we group in the same cluster all the paths p of G having a sink that matches the sink
of q. If a variable occurs in the sink of q, we retrieve the last value v occurring in q
and we group in the same cluster all the paths p of G containing a label matching
v. Before the insertion of a path p in the cluster for q, we evaluate the alignment
needed to obtain p from q. This allows us to compute the score of p, i.e. λ(p, q).
The paths in a clusters are ordered according to their score, with the lower coming
first. Note that the same path p can be inserted in different clusters, possibly with
a different score. As an example, given the data graph Gd and the query graph Q1
of Fig. 1, we obtain the clusters shown in Fig. 4. In this case clusters cl1, cl2 and
cl3 correspond to the paths q1, q2 and q3 of PQ, respectively; note the scores at
the right side of each path and in particular the path p1 occurring in both cl1 and
cl2 with different scores, i.e. 7 in cl1 and 5 in cl2.

Fig. 3 An example of intersection query graph

123

Distrib Parallel Databases

Fig. 4 An example of the clustering step

Fig. 5 Forest of paths

Search The last step aims at generating the most relevant answers by combining
the paths in the clusters built in the previous step. This is done by picking and
combining the paths with lowest score from each cluster. The intersection query
graph allows us to verify efficiently if they form an answer. As an example, given
the clusters in Fig. 4, the first answer is obtained by combining the paths p1, p10
and p20 that are the elements with the greatest score in each corresponding cluster
and provide the best alignment with the paths of PQ associated with the clusters.

The most tricky task of the whole process occurs in the third step above, where we
try to generate the top-k answers by minimizing the number of combinations between
paths. This is done by organizing the combinations of paths in a forest where nodes
represent the retrieved paths, while edges between paths means that they have nodes
in common. The label of each edge (pi , p j) is 〈(qi , q j) : [ψ(qi , q j , pi , p j)]〉 where
qi and q j are the paths corresponding to the clusters where pi and p j were included,
respectively.

For instance, Fig. 5 reports the forest for the paths with the higher score extracted
from the clusters in Fig. 4. The label on the edge (p10, p1) indicates that if p10 and
p1 originate from q2 and q1, respectively, then ψ(q2, q1, p10, p1) is 1. Conversely,

123

Distrib Parallel Databases

the label on the edge (p7, p1) indicates that ψ(q2, q1, p7, p1) is 0.5. Note that in the
forest the edge (p7, p1) is dashed since the label is not 1. The tree in the forest with
nodes p1, p10 and p20 yields the first answer.

The rest of the section describes in more detail the clustering and search steps of
the approach.

3.2 Clustering

Given the intersection query graph built in the previous steps (i.e. also the set PQ)
and a data graph G, we retrieve and group the paths from G ending into the sinks of
the paths of PQ, as shown in Algorithm 1.

Algorithm 1: Clustering of paths
Input : The query paths PQ, the data graph G.
Output: The set of clusters CL.

foreach q ∈ PQ do1
cl← ∅ ;2
PD← getPaths(G, q) ;3
foreach p ∈ PD do4

cl.enqueue(p, λ(p, q))5

CL.put(q, cl) ;6

return CL ;7

The set CL of clusters is implemented as a map where the key is a path q from PQ
and the value is a cluster with all the paths p ending in the sink of q. Each cluster
is implemented as a priority queue of paths, where the priority is based on the score
associated with each path (in ascending order). In this paper, we use an implementa-
tion of priority queues to guarantee a constant time complexity for insertion/deletion
operations. For each q ∈ PQ [line 1] we extract the sink sk of q and we retrieve all
p from G matching sk. Such task is performed by the function getPaths [line 3].
Once we have obtained the set PD, we evaluate the score of each p ∈ PD with
respect to q and we insert p in the cluster cl [lines 4–5]. Finally, we insert cl in CL
[line 8].

3.3 Search

Given the set of clusters CL, we retrieve the top-k answers by generating the connected
components from the most promising paths in CL. Algorithm 2 summarizes the entire
process of search aimed at retrieving the top-k answers.

As long as we did not generate k answers and the set of clusters is not empty [line
1], we build a forest F [line 2] from the most promising paths in CL and we provide
the top-k answers by visiting F [lines 4–8]. As we have said in Sect. 3.1, nodes of F
denote paths in CL, while edges (pi , p j) represent the fact that pi and p j have nodes

123

Distrib Parallel Databases

Algorithm 2: Search
Input : number k, clusters CL, intersection query graph I G.
Output: The set of answers S.

while (CL �= ∅) ∧ (|S| < k) do1
F ← build(CL, I G);2
roots← F .keys;3
while (|S| < k) ∧ (roots �= ∅) do4

V← ∅;5
r← getMax(roots);6
roots← roots− {r};7
a← Visit(r,getQPath(CL, r),V,F .get(r));8
S.add(a);9

return S ;10

in common. The trees of F are then returned as answers to the query. In the following
we describe in more detail the building and the visiting of F .

Building CL and the intersection query graph I G, first of all we have a building
phase generating a forest of paths, as shown in Algorithm 3.

Algorithm 3: Build
Input : clusters CL, intersection query graph I G.
Output: a forest F .

q ← maxCardinality(I G);1
cl← CL.get(q);2
PD← cl.dequeueTop();3
V← {q};4
F ← ∅;5
foreach p ∈ PD do6

T← ∅;7
T.N ← T.N ∪ {p};8
treeBuild(p,T,CL, I G, q,V);9
F .put(p,T);10

return F ;11

I G is used to evaluate the conformity of the answers while we build them. Algo-
rithm 3 implements a BFS traversal. Therefore we start from the node q of I G with
the maximum cardinality [line 1]. For instance, referring to Q1 of Example 1, the
algorithm selects q2 as starting node. Then we select the cluster cl corresponding to q
[line 2] and we dequeue the top paths PD from cl [line 3]. This task is supported by
the function dequeueTop. The path q is inserted in the set V of visited query paths
[line 4]. Referring to our example the cluster cl2 corresponds to q2. In this case the
top paths to dequeue are p7, p8, p9 and p10. The paths PD extracted from the cluster
represent the roots of the forest F . We implement F as a map where the keys are paths,
i.e. the roots, and the values are the trees of F . Each tree T of F is modeled as a graph
〈N , E〉 where the nodes in N are paths and each edge l(ni , n j) ∈ E is described in

123

Distrib Parallel Databases

terms of 〈ni , n j , l〉 where l is the label of the edge. For each p ∈ PD, we build a tree
rooted in p by using the procedure treeBuild [line 9]. The procedure is described in
details in Algorithm 4.

Algorithm 4: treeBuild
Input : root r, tree T, clusters CL, query path q, intersection query graph I G, visited V.

L← ∅;1
foreach (q, q ′) ∈ I G.E : q ′ �∈ V do2

cl← CL.get(q ′);3
PD← cl.dequeueTop();4
foreach p ∈ PD : p↔ r do5

T.V ← T.V ∪ {p};6
e← 〈r, p, (q, q ′) : [ψ(q, q ′, r, p)]〉;7
T.E ← T.E ∪ {e};8
L← L ∪ {〈p, q ′〉};9

V← V ∪ {q ′};10

foreach 〈p, q ′〉 ∈ L do11
treeBuild(p,T,CL, q ′, I G,V);12

The procedure treeBuild starts the navigation of I G from the input query path q.
For each edge (q, q ′), where q ′ is not yet visited, we dequeue the top paths PD from
the cluster cl corresponding to q ′ [lines 3–4]. Then for each path p ∈ PD having nodes
in common with r (denoted by p↔ r), we build the edge (r, p) and the corresponding
label 〈r, p, (q, q ′) : [ψ(q, q ′, r, p)]〉, [line 7], and we insert it in the set E of T [line
8]. The pair 〈p, q ′〉 is added to the set L [line 9]. Finally, we include q ′ in the set V
of visited query paths [line 10] and we recursively call the procedure for each p [line
12].

As an example, Fig. 6 illustrates the building of the forest F with respect to Exam-
ple 1. Starting from p7, p8, p9 and p10 (i.e. the roots) extracted by the cluster cl2
(i.e. q2), we traverse I G: we consider q1 and q3. Traversing q1 we dequeue the top

Fig. 6 Building of the forest

123

Distrib Parallel Databases

paths from the cluster cl1: in this case we have only p1; p1 is the successor of all
roots since it has nodes in common with them. Therefore, we add an edge between
each root and p1 in F . However each edge presents a different conformity: p9 and p10
provide two nodes in common with p1 conforming exactly with the query graph Q1
(i.e. 1); while p7 and p8 have one node in common p1 conforming partially with Q1
(i.e. 0.5). Similarly, in the traversal of q3 we dequeue p17, p18, p19 and p20 from cl3.
In this case only p17 and p20 have nodes in common with p7 and p10, respectively,
with conformity 1. Once it has added the last edges to F , the procedure terminates
since it visited all the nodes of I G.

The building step (Algorithm 3) is the more involved of the entire process. Algo-
rithm 3 requires I iterations, where I is the number of paths PD retrieved in line 3,
which, in the worst case, are all the paths of the data graph. The most involved opera-
tion in the body of the loop in Algorithm 3 is a call to Algorithm 4 whose goal is the
construction of a tree T , where the nodes represent paths of the data graph G and the
edges connect paths having a non-empty intersection. The algorithm is made of two
parts (lines [2–10] and [11–12]). In the first part there is a nested loop. The external
loop iterates over the query paths in the query graph, which are at most h. The internal
loop iterates over the paths in the data graph that align with the paths in the query,
which are at most I . It follows that the first part requires, at most, h× I steps. At each
step, a pair 〈p, q ′〉, where p is a path of the data graph that aligns with the path q ′ in
the query graph, is added to the set L. The second part of the algorithm iterates over
the elements of L, which are at most I . In each iteration, there is a recursive call to
the algorithm. In the base case, the query graph consists in just one path and the cost
is constant since no iteration is required both in the first and in the second part of the
algorithm. In the general case, since at each call of the algorithm we consider only
the paths of the query graph that have not been visited yet (line 2), we have that the
cost C of the algorithm can be expressed as: C(h, I) = (I × h) + I × C(h − 1, I).
Therefore, we have that the complexity of Algorithm 4 is the solution of the following
equation:

C(h, I) =
{

I × C(h − 1, I)+ I × h, h > 1
1, h = 1

From this equation, it follows that the complexity of Algorithm 4 is in O(I h−1)

and since Algorithm 3 requires I iterations of Algorithm 4, the overall complexity of
Algorithm 3 is in O(I × I h−1) ∈ O(I h).

Visiting The last step consists in a visit of the forest F . Algorithm 2 starts the visit
from the root with the maximum score. The visit implements a Depth-first search
(DFS) traversal as shown in details in Algorithm 5.

As in the building step, we exploit the intersection query graph to explore F .
Starting from a root p of F to which the path q is associated (i.e. p was in the cluster
corresponding to q), for each (q, q ′) in I G we select the successor p′ of p to which
q ′ is associated. In particular, since we can have multiple p′ to which q ′ is associated,
we select the most conforming path p′ with the getPathMaxConformity [line 5]. We
then include p′ in the answer a and we call recursively the algorithm [line 7]. If p has
no successors, then we return p.

123

Distrib Parallel Databases

Algorithm 5: Visit
Input : path p, path q, visited V, tree T.
Output: set of paths a.

if �〈p, p′, l〉 ∈ T.E then1
return {p};2

else3
foreach (q, q ′) ∈ I G.E : q ′ �∈ V do4

p′ ← getPathMaxConformity(T, p,q,q ′);5
V← V ∪ {q ′};6
return {p} ∪ Visit(p′,q ′,V,T);7

Table 1 Overall complexity
Clustering Building Visiting Search Overall

|Q| × O(I) O(I h) O(hh−1 × I) O(k × I h) O(k × I h)

Referring to Fig. 6, we start from roots = {p10, p7, p9, p8} (i.e. in order of priority).
Then the first answer a1 dequeues p10. From p10, we add p20 and p1 to a1, that are
the most important paths to which q3 and q1 are associated. Finally, we have a1 =
{p10, p1, p20}. Similarly we generate, in order, a2 = {p7, p1, p17}, a3 = {p9, p1}
and a4 = {p8, p1}.

In the base case of Algorithm 5 [lines 1–2] either the query graph T has one node
only. In this case, the cost is constant since no iteration is performed. In the general
case, as for the building, the visit explores the graph I G and iterates at most h times
[lines 4–7]. In each iteration there is a call to function getPathMaxConformity, which
has a cost in O(I) since it checks the conformity of all the children of p in T, which
are at most I . Then, there is a recursive call to the algorithm and so, since at each call
we consider only the paths of the query graph that have not been visited yet [lines 6–7],
the cost can be expressed, in the general case, as C(h, I) = h × (I + C(h − 1, I)).
Therefore, the computational time complexity of Algorithm 5 is the solution of the
following equation:

C(h, I) =
{

h × (I + C(h − 1, I)), h > 1
1, h = 1

From this equation, it follows that the complexity of Algorithm 5 is in O(hh−1 × I).
Overall complexity Table 1 summarizes all the discussed complexity. The overall

process consists of two main phases: clustering (Algorithm 1) and search (Algo-
rithm 2). In turn, the search algorithm consists of two main parts: building (Algo-
rithm 3) and visiting (Algorithm 5). As we have said above, search is the core of
the overall process and iterates at most k times, where k is the number of answers to
return. In each iteration, there is a call to building and, at most, I calls to visiting.
Therefore O(search) ∈ k×O(building)+ k× I ×O(visiting) ∈ O(k× I h), where
I is the number of paths retrieved and h is the number of paths in Q. It turns out that
the overall complexity is bounded by the complexity of the search phase. Note that the

123

Distrib Parallel Databases

complexity is exponential in the size of the query, which is usually very limited with
respect to the size of data. On the other hand, we have that the maximum number of
paths in a data graph G (see Definition 5) is proportional to n2 where n is the number
of nodes of G. This is because, in the worst case, we have n/2 sources and n/2 sinks
with edges between each source and each sink, and so we have n2/4 paths. It follows
that our technique exhibits a polynomial time complexity in the size of the data. Note
that, as soon as I tends to n2, the depth of the tree computed in the build phase tends
to 1, because the graph becomes strongly connected. In this case, the complexity of
search reduces to O(k × I). We also point out that, in Sect. 5 we show that our
technique improves other approaches in terms of efficiency over real world data sets
and it scales seamlessly with the size of the input.

4 Implementation

We have implemented our approach in Sama
3, a Java system with a Web front end.

To build answers efficiently, we index the following information: vertices’ and
edges’ labels of the data graph G (for element-to-element mapping) and the paths
ending into sinks, since they bring information that might match the query. The first
information enables to locate vertices and edges matching the labels of the query graph,
the second allows us to skip the expensive graph traversal at runtime. The indexing
process is composed of three steps: (i) hashing of all vertices’ and edges’ labels, (ii)
identification of sources and sinks, and (iii) computation of the paths. The first and the
second step are relatively easy. The third step requires to traverse the graph starting
from the sources and following the routes to the sinks. We have implemented an
optimized version of the BFS paradigm, where independently concurrent traversals
are started from each source. Similarly to [4], and differently from the majority of
related works (e.g., [5]), we assume that the graph cannot fit in memory and that can
only be stored on disk. Such algorithm allows to retrieve a polynomial number of
paths; of course it is not the complete set of paths between sources and sinks, but as
shown in our experimentations such set allows a good effectiveness. Specifically, we
store the index in a GraphDB, that is HyperGraphDB [11] (HGDB) v. 1.1: it models
data in terms of hypergraphs. Let us recall an hypergraph H is a generalization of
a graph, where an edge can connect any number of vertices. Formally H = (X, E)
where X is a set of nodes or vertices, and E is a set of non-empty subsets of X , called
hyperedges. In other words, E is a subset of the power set of X . This representation
allows us to define indexes on both vertices and hyperedges: X = {xm |m ∈ M} and
E = {e f | f ∈ F, e f ⊆ X}, where each vertex xm and edge e f are indexed by an index
m ∈ M and f ∈ F , respectively. Figure 7 shows an example of reference.

Physically HGDB implements several HGHandle to wrap and to index nodes and
edges of G; each subset of nodes (i.e. hyperedge) is implemented into a HGEdgeLink
having several target links to the HGHandle of contained nodes (i.e. a hyperedge is
implemented as a list of cursors to the contained nodes). In our framework, each path
is modeled as a HGEdgeLink in HGDB. The matching is supported by standard IR

3 A prototype application is available at https://www.dropbox.com/sh/d5u1u24qnyqg18f/7Oefq8-qVa.

123

https://www.dropbox.com/sh/d5u1u24qnyqg18f/7Oefq8-qVa

Distrib Parallel Databases

Fig. 7 An example to represent a data graph G (left side) in a hypergraph H (right side)

engines (c.f. Lucene Domain index—LDi4) embedded into HGDB. In particular we
define a LDi index on the labels of nodes and edges. In this way, given a label, HGDB
retrieves all paths containing data elements matching the label in a very efficient way
(i.e. exploiting the cursors). Further, semantically similar entries such as synonyms,
hyponyms and hypernyms are extracted from WordNet [12], supported by LDi.

5 Experimental results

In our experiments we used several widely-accepted benchmarks for graph matching
evaluation. We have compared Sama with three representatives graph matching sys-
tems: Sapper [6], Bounded [5] and Dogma [4]. Experiments were conducted on a
dual core 2.66 GHz Intel Xeon, running Linux RedHat, with 4 GB of memory and a
2-disk 1Tbyte striped RAID array.

Indexing In our experiments we consider real RDF datasets, such as PBlog
5, Gov-

Track , KEGG, IMDB [13], DBLP, and synthetic datasets, such as Berlin [14],
LUBM [15] and UOBM [16]. Table 2 provides importing information for any dataset:
number of triples, number of nodes (|H V | column) and number of generated hyper-
edges (|H E | column) in HGDB, time to create the index on HGDB (t column) and
memory consumption on disk. In our case, building the index takes hours for large
RDF data graphs, due to the demanding traversal on the complete large graph, and
requires GB of memory resources on disk to store data and metadata. However our
framework benefits the high performance to retrieve data elements on HGDB, as shown
in Table 3. The table illustrates the average response times to retrieve, given a label,
a path p and all data elements (nodes and edges) associated with p. We performed
cold-cache experiments (i.e. by dropping all file-system caches before restarting the

4 http://lucene.apache.org/.
5 http://www-personal.umich.edu/~mejn/netdata/.

123

http://lucene.apache.org/
http://www-personal.umich.edu/~mejn/netdata/

Distrib Parallel Databases

Table 2 HyperGraphDB
indexing

DG #Triples |H V | |H E | t Space

PBlog 50 K 1,5 K 96 K 1 sec 56 MB

GOV 1 M 280 K 330 K 4 min 340 MB

KEGG 1 M 300 K 606 K 7 min 700 MB

Berlin 1 M 320 K 700 K 10 min 910 MB

iMDB 6 M 900 K 3 M 47 min 1.2 GB

LUBM 12 M 1 M 15 M 102 min 12.9 GB

UOBM 12 M 1 M 15 M 102 min 12.9 GB

DBLP 26 M 4 M 17 M 441 min 23.6 GB

Table 3 Average time to
retrieve a path

DG Cold (msec) Warm (msec)

IMDB 0.01 0.005

LUBM 0.04 0.008

DBLP 0.06 0.009

Table 4 Index maintenance
performance

Insertion (ms) Deletion (ms) Update (ms)

Vertex 4.6 4.3 5.7
Edge 11.4 22.1 6.3

various systems and running the queries) and warm-cache experiments (i.e. without
dropping the caches).

On top of this index organization, to avoid to recompile the entire index on HGDB,
we implemented also several procedures to support the maintenance: insertion, dele-
tion and update of new vertices or edges in the data graph G. Such operations are
documented in [17].

Update operations perform well, as demonstrated in Table 4. We inserted and
updated 100 vertices (edges) and then we deleted them. We measured the average
response time (ms) to insert/delete/update one vertex (edge). Once the index is built
the first time, it can be maintained easily as the maintenance operations satisfy practical
scenarios of frequent update of the dataset.

Query execution In this experiment, for each indexed dataset we formulated 12
queries in SPARQL of different complexities (i.e. number of nodes, edges and vari-
ables). In the following we refer to the most huge datasets: in particular we will discuss
in depth results over LUBM dataset, that are the most representative. DBLP and iMDB
provide a very close behavior. Hence, we consider 12 queries from the LUBM bench-
mark that provide results without involving reasoning.6 We ran the queries ten times
and we measured the average response time, in ms and logarithmic scale. Precisely,
the total time of each query is the time for computing the top-10 answers, includ-
ing any preprocessing, execution and traversal. We performed both cold-cache and

6 At https://www.dropbox.com/sh/d5u1u24qnyqg18f/7Oefq8-qVa you can find the complete set of queries.

123

https://www.dropbox.com/sh/d5u1u24qnyqg18f/7Oefq8-qVa

Distrib Parallel Databases

(a)

(b)

Fig. 8 Average response time on LUBM: bars refer each system, using different gray scales, i.e. from
Sama , white bars, to Dogma , black bars

warm-cache experiments. To make a comparison with the other systems, we refor-
mulated the 12 queries by using the input format of each competitor. In Sama we
set the coefficients of the scoring function as follows: a = 1, b = 0.5, c = 2 and
d = 1. Therefore we show the behavior of all systems in terms of number of triples
and complexity. The query run-times are shown in Fig. 8.

In general Bounded performs better than Dogma , while Sapper is less efficient.
Sama performs very well with respect to all competitors: it is supported by the index
that retrieves all needed data elements in an efficient way (i.e. skipping data graph
traversal at runtime and supporting parallel implementations). In particular Fig. 9
shows the cumulative time percentage of each step (i.e. preprocessing, clustering,
building and visiting) in our framework. In any query, the most amount of time is
spent for the preprocessing step (i.e. 89 % of the cumulative amount of time in aver-
age): we have to traverse the query graph Q and extract all paths, and to retrieve all
paths. Of course a decentralized environment could relevantly limit this time con-
sumption. However time consumption percentages of the main steps show the effi-
ciency of our search algorithm and demonstrate the feasibility of the approach: we
compute simple alignments between paths. The other datasets provide a very similar
behavior.

123

Distrib Parallel Databases

Fig. 9 Cumulative time percentage of each step

Fig. 10 Flexibility of Sama on LUBM

Another aspect that we test is the scalability of our approach. In particular this
experiment shows that the time of execution is quadratic with respect to size of data
and this is coherent with the polynomial time complexity of our technique (see Sect. 3).
Figure 10 shows the flexibility of Sama with respect to both the number I of paths
extracted from G and the number h of paths extracted from Q. For each couple (I, h)
we depict the average response time (in msec) referring to cold-cache experiments:
the number is enclosed in a circle and are scaled proportionally to the number (i.e.
warm-cache experiments follow the same trend). The size of each circle is perfectly
linear with the growth of both I and h: this tells us that our approach is almost linear
with respect to both the measures. Such aspect is analyzed in more detail by evaluating
the scalability of Sama with respect to I , h, the number of nodes and the number of
variables in Q, through distinct diagrams, as illustrated in Fig. 11 (i.e. it refers to cold-
cache experiments). The diagram displays the trend-line and the interpolated equation:
in any case, the behavior of Sama is polynomial with respect to the size of data; in
particular the trend-line always approximate a quadratic trend (i.e. we have the same
for warm-cache experiments).

123

Distrib Parallel Databases

y = -6E-08x2 + 0,0113x + 173,19

300

350

400

450

500

550

600

650

700

1,4 2,4 3,4 4,4 5,4 6,4 7,4 8,4 9,4 10,4

m
s
e
c

I = #extracted paths from G (unit 100.000)

(a)

y = -1,0242x2 + 34,57x + 349,73

300

350

400

450

500

550

600

650

700

0 2 4 6 8 10 12 14 16 18

m
se

c

h = # extracted paths from Q

(b)

y = -0,6909x2 + 29,646x + 325,17

300

350

400

450

500

550

600

650

700

3 8 13 18 23

m
se

c

nodes in Q

(c)

y = -7,1786x2 + 92,679x + 346

300
350
400
450
500
550
600
650
700

1 2 3 4 5 6 7

m
se

c

variables in Q

(d)

Fig. 11 Scalability of Sama on LUBM with respect to a the number I of extracted paths from G, b the
number h of extracted paths from Q, c the number of nodes in Q and d the number of variables in Q

Effectiveness The last experiment evaluates the effectiveness of Sama and of the
other competitors. The first measure we used is the reciprocal rank (RR). For a query,
RR is the ratio between 1 and the rank at which the first correct answer is returned;
or 0 if no correct answer is returned. In any dataset, for all 12 queries we obtained

123

Distrib Parallel Databases

Fig. 12 Effectiveness on LUBM: bars refer each system, using different gray scales, i.e. from Sama , white
bars, to Dogma , black bars

RR = 1. In this case the monotonicity is never violated. To make a comparison with
the other systems we inspected the matches found in terms of the answers returned.
Figure 12 shows the effectiveness of all systems on LUBM, where we run the queries
without imposing the number k of answers.

In this case Sama and Sapper always identify more meaningful matches than both
Bounded and Dogma . This is due to the approximation operated by Sama and Sapper

with respect to the others. We remind that the evaluation of the matches was performed
by experts of the domain (e.g., LUBM). Finally, to support the meaningfulness of
results, we measured the interpolation between precision and recall, that is for each
standard level r j of recall (i.e. 0.1, . . ., 1.0) we calculate the average max precision of
queries in [r j , r j+1], i.e. P(r j) = maxr j≤r≤r j+1 P(r). Figure 13 shows the results on
LUBM: for Sama we depict three different trends with respect to the range of |Q|. As
is to be expected, queries with limited number of paths presents the highest quality
(i.e. a precision in the range [0.5,0.8]). More complex queries decrease the quality of
results, due to more data elements retrieved by the approximation, presenting good
quality though. Such result confirms the feasibility of our system. The effectiveness
on the other datasets follows a similar trend. On the other hand, as to be expected,
the precision of the other systems dramatically decreases for large values of recall:
Bounded and Dogma do not exploit an imprecise matching, while Sapper introduces
noise (i.e. not interesting approximate results) in high values of recall.

6 Related work

Many research efforts have focused on graph similarities, specially from the field
of graph matching [8]. In fact, a first category of works relies on subgraph isomor-
phism [18]. However the well-known intractability of the problem inspired approxi-
mate approaches to simplify the problem [8,19]. In particular, graph simulation tech-
niques has been used to make graph matching tractable. A second category of works
focuses on the adoption of special indexes. In particular, several approaches have
proposed in-memory structures for indexing the nodes of the data graph [20], while

123

Distrib Parallel Databases

Fig. 13 Effectiveness on LUBM: precision and recall of Sama

Fig. 14 An example of bounded
query

others have proposed specific indexes for the efficient execution of SPARQL queries
and joins [21]. In addition, other proposals tackle the problem by indexing graph sub-
structures (e.g., paths, frequent subgraphs, trees). Typically, these indexes are exploited
in problems dealing with graph matching, to filter out graphs that do not match the
input query. Approaches in this area can be classified in graph indexing and subgraph
indexing. In graph indexing approaches, such as gIndex [22], TreePi [23], and FG-
Index [24], the graph database consists of a set of small graphs. The indexing aims at
finding all the database graphs that contain or are contained in a given query graph.
On the other hand, subgraph indexing approaches, such as DOGMA [4], TALE [25],
GADDI [9], SAPPER [6], and Zeng et al. [26] aim at indexing large database graph,
with the goal of finding efficiently all (or a subset of) the subgraphs that match a given
query. Finally, there are works on reachability [27,28] and distance queries [29] based
on testing the existence of a path between two nodes in the graph and on the evaluation
of the distance between them. An interesting approach is proposed in [5] where the
authors reformulate the query graph in terms of a bounded query in which an edge
denotes the connectivity of nodes within a predefined number of hops. For instance,
we can represent Q1 of Example 1 in terms of a bounded query as shown in Fig. 6.
This guarantees a cubic time complexity for the graph matching problem (Fig. 14).

Most of the mentioned works are focused on medical, chemical and proteinic net-
works and they are usually not efficient over semantic and social data [10]. Therefore,
specialized metrics where proposed [10,30]. GMO [30] introduces a structural metric
based on a bipartite graph, NESS [10] proposes a measure based on both topolog-
ical and content information in the neighborhood of a node of the graph. All these
approaches differ quite a lot from our method. Indeed, we tackle the problem using a

123

Distrib Parallel Databases

technique that takes into account the structural constraints on how different relations
between nodes have to be correlated. It relies on the tractable problem of alignment
between paths.

7 Conclusion and future work

In this paper we have presented a novel approach to approximate querying of large
RDF data sets. The approach is based on a strategy for building the answers of a query
by selecting and combining paths of the underlying data graph that best align with
paths in the query. A ranking function is used in query answering for evaluating the
relevance of the results as soon as they are computed. In the worst case our technique
exhibits a polynomial computational cost with respect to the size of the input and
experimental results show that it behaves very well with respect to approaches in
terms of both efficiency and effectiveness. This work opens several directions of further
research. From a conceptual point of view, we intend to introduce improvements on the
construction of answers and on the on-line computation of the scoring function. From
a practical point of view, we intend to implement the approach in a Grid environment
(for instance using Hadoop/Hbase) and develop optimization techniques to speed-up
the creation and the update of the index, as well as compression mechanisms for
reducing the overhead required by its construction and maintenance.

References

1. De Virgilio, R., Giunchiglia, F., Tanca, L. (eds.): Semantic Web Information Management—A Model-
Based Perspective. Springer, Berlin (2010)

2. De Virgilio, R., Guerra, F., Velegrakis, Y. (eds.): Semantic Search Over the Web. Springer, Berlin,
Heidelberg (2012)

3. De Virgilio, R., Orsi, G., Tanca, L., Torlone, R.: Nyaya: A system supporting the uniform management
of large sets of semantic data. In: ICD., pp. 1309–1312. (2012)

4. Bröcheler, M., Pugliese, A., Subrahmanian, V.S.: Dogma: A disk-oriented graph matching algorithm
for rdf databases. In: ISWC, pp. 97–113. (2009)

5. Fan, W., Li, J., Ma, S., Tang, N., Wu, Y., Wu, Y.: Graph pattern matching: from intractable to polynomial
time. Proc. VLDB Endow. 3(1), 264–275 (2010)

6. Zhang, S., Yang, J., Jin, W.: Sapper: subgraph indexing and approximate matching in large graphs.
Proc. VLDB Endow. 3(1), 1185–1194 (2010)

7. Wood, P.T.: Query languages for graph databases. SIGMOD Rec. 41(1), 50–60 (2012)
8. Gallagher, B.: Matching structure and semantics : A survey on graph-based pattern matching. In:

Artificial Intelligence, pp. 45–53. (2006)
9. Zhang, S., Li, S., Yang, J.: Gaddi: distance index based subgraph matching in biological networks. In:

EDBT, pp. 192–203. (2009)
10. Khan, A., Li, N., Yan, X., Guan, Z., Chakraborty, S., Tao, S.: Neighborhood based fast graph search

in large networks. In: SIGMOD, pp. 901–912. (2011)
11. Iordanov, B.: Hypergraphdb: A generalized graph database. In: WAIM Workshops, pp. 25–36. (2010)
12. Fellbaum, C. (ed.): WordNet An Electronic Lexical Database. The MIT Press, Cambridge (1998)
13. Hassanzadeh, O., Consens, M.P.: Linked movie data base (triplification challenge report). In:

I-SEMANTICS, pp. 194–196 (2008)
14. Bizer, C., Schultz, A.: The Berlin sparql benchmark. Int. J. Semant. Web. Inf. Syst. 5(2), 1–24 (2009)
15. Guo, Y., Pan, Z., Heflin, J.: Lubm: a benchmark for owl knowledge base systems. J. Web. Semant.

3(2–3), 158–182 (2005)

123

Distrib Parallel Databases

16. Ma, L., Yang, Y., Qiu, Z., Xie, G.T., Pan, Y., Liu, S.: Towards a complete owl ontology benchmark.
In: ESWC, pp. 125–139. (2006)

17. Cappellari, P., De Virgilio, R., Maccioni, A., Roantree, M.: A path-oriented rdf index for keyword
search query processing. In: DEXA, pp. 366–380. (2011)

18. Zou, L., Chen, L., Özsu, M.T.: Distance-join: pattern match query in a large graph database. Proc.
VLDB Endow. 2(1), 886–897 (2009)

19. Fan, W., Bohannon, P.: Information preserving xml schema embedding. ACM Trans. Database Syst.
33(1) (2008)

20. Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query candidates for efficient
keyword search on graph-shaped (rdf) data. In: ICDE Conference, pp. 405–416 (2009)

21. Neumann, T., Weikum, G.: x-rdf-3x: fast querying, high update rates, and consistency for rdf databases.
Proc. VLDB Endow. 3(1), 256–263 (2010)

22. Yan, X., Yu, P.S., Han, J.: Graph indexing: a frequent structure-based approach. In: SIGMOD,
pp. 335–346. (2004)

23. Zhang, S., Hu, M., Yang, J.: Treepi: A novel graph indexing method. In: ICDE, pp. 966–975. (2007)
24. Cheng, J., Ke, Y., Ng, W., Lu, A.: Fg-index: towards verification-free query processing on graph

databases. In: SIGMOD, pp. 857–872. (2007)
25. Tian, Y., Patel, J.M.: Tale: A tool for approximate large graph matching. In: ICDE, pp. 963–972. (2008)
26. Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approximating graph edit

distance. Proc. VLDB Endow. 2(1), 25–36 (2009)
27. Jin, R., Xiang, Y., Ruan, N., Fuhry, D.: 3-hop: a high-compression indexing scheme for reachability

query. In: SIGMOD, pp. 813–826. (2009)
28. Poulovassilis, A., Wood, P.T.: Combining approximation and relaxation in semantic web path queries.

In: ISWC, pp. 631–646. (2010)
29. Chan, E.P.F., Lim, H.: Optimization and evaluation of shortest path queries. VLDB J. 16(3), 343–369

(2007)
30. Hu, W., Jian, N., Qu, Y., Wang, Y.: Gmo: A graph matching for ontologies. In: Integrating Ontologies.

(2005)

123

	Approximate querying of RDF graphs via path alignment
	Abstract
	1 Introduction
	2 Preliminary issues
	2.1 Problem definition
	2.2 Paths and computed answers
	2.3 Scoring function
	2.4 Computation of alignments

	3 Path-based query processing
	3.1 Overview
	3.2 Clustering
	3.3 Search

	4 Implementation
	5 Experimental results
	6 Related work
	7 Conclusion and future work
	References

