Keyword based Search over Semantic Data in
Polynomial Time

Paolo Cappellari!, Roberto De Virgilio*?, Antonio Maccioni*?, Michele Miscione

*Dipartimento di Informatica e Automazione, UnivedsRoma Tre, Rome, Italy
2devirgilio@ia.uniroma3.it, S3maccioni @ia.uniroma3.it, “*niscione@ia.unirom3.it
#Department of Computing Science, University of Albertanatia
lcappel | ari @s. ual berta. ca

Abstract—In pursuing the development of Yani i, a novel as a graph exploration, the latter being a topic counting
keyword based search system on graph structures, in this p& many known techniques. In this context, a combination of
we present the computational complexity study of the approeh, | 404 graph exploration techniques are used to discover the
highlighting a comparative study with actual PTI ME state-of- . f ; hi he k d d Kiti h
the-art solutions. The comparative study focuses on a theetical !n ormation matching the keywords and to rank it in a way that
analysis of different frameworks to define complexity rangs, IS more relevant for the user. In these frameworks, generall
which they correspond to, in the polynomial time class. We the first (sub-)goal is to identify the portion of the graph
characterize such systems in terms of general measures, whi holding information matching the keywords, possibly ratyi
give a general description of the behavior of these framewds on a sophisticated index structure. Then, the second (godi-)
according to different aspects that are more general and irdfrma- . . ' . .
tive than mere benchmark tests on a few test cases. We show tha 'S to Search for a connection between such graph_portlops n
Yani i holds better performance than others, confirming itself as Order to build the most complete answers (or solutions)rgive
a promising approach deserving further practical investication the keywords. Finally, third (sub-)goal, the identifiedwg@ns

and improvement. are ranked according to the relevance for the user and then
returned.

Navigating graph structures while building and ranking
Nowadays data is disseminated in a number of differec&andidate solutions hides a number of difficulties, esfigcia
sources, from databases systems to the Web, from a trdddm a performance point of view. Because systems have
tional structured organization (relational) to a semirstiured to be fast in returning their answers back to users, many
(XML), up to the unstructured ones (text in Web documentsapproaches implement heuristic pruning techniques tocedu
Although availability of data is constantly increasing,eonthe search space on the graph, or greedy-like techniquéyto (

principal difficulty users have to face is to find and retrievin) aim directly to the most promising solution, or threshol
the information they are looking for. To precisely accesgdatechniques to cut less promising solutions (Top-K appreath
a user should know how data is organized in the source, andVhile all these techniques can lead to the development of
how to write a query in the language required by the sourcgistems that perform reasonably well in many practicalssase
Clearly, this represents an obstacle to information admesst not much attention is given to the study of the computational
expert users. For this reason keyword-based search systeoraplexity of keyword-based search approaches. Most paper
are increasingly capturing the attention of researcharfadt, present the evaluation of their approach in terms of perfor-
there are approaches building on top of traditional systenmance comparisons (benchmark tests) with respect to other
like DBMSs: the goal is to free users from knowing the detailsompeting approaches. Usually, a few test cases are ddsigne
of the query language or of the structure (schema) of the datan on the different systems with performance of each system
Keyword based search has been applied to traditional teaced and reported. While this is a genuine evaluation of a
lational sources, XML contexts and graph-based structuregstem, it does not describe how an alteration of the setting
Examples of systems developed for relational sources dsize of a query, size of the graph, and so on) affects the
BANKS [2], DI SCOVER [7] and DBXpl orer [1]. In XML performance.
context we find works likeXxsear ch and Xr ank as well In this paper we want to analyze the problem from a
as others like the ones from Kaushik et al., respectively [3heoretical point of view. We study and compare three re-
[5]. All of these works (in any context) exploit one maincent approaches to keyword-based search on graph strsicture
advantage: data can be represented in trees. This simptiGesBLI NKS [6], Sear chWebDB [9] and Yani i [4]. We focus
problem. In a more general representation, data are ragegse on them for two reasons: (i) they each represent a different
by a graph, requiring more efficiency and accuracy of tHeeyword search evaluation paradigm, (ii) they are the only
solution. This modeling approach is living a great momentuones with computational complexity, as is detailed later, i
because: (i) data from disparate sources can be modeld ME. BLI NKS is an example of an approach based on a
with a graph structure, (ii) information search can be eeali sophisticated index structure, which enables fast ideatifin

|. INTRODUCTION

of the graph portion relevant for the resul@ar chWebDB « Intra-block node-keyword map/y i the shortest dis-

is an example of exploitation of the graph structure to build tances between pairs of nodes within a block.

promising queries that should return information of ing¢fer « Intra-block portal-node listd. p: the lists of nodes in a

the userYani i is an example of a clustering approach with given block that can reach a given out-portal node within

an off-line indexing that enables a low runtime executiostco block without leaving the block.

in which solutions are combined and returned starting frome Intra-block node-portal distance mapy p: the shortest

the most promising, descending monotonically. distances between a given node in a block and his closest
In the discussion we are interested in obtaining a desoripti out-portal within the block.

of the systems in terms of a number of different measur@ghile the block indexcontains:

like the size of the input query, the size of the search space, Keyword-block listsL p: the lists of blocks containing

the number of maximum solutions returned, and others as keyword matching nodes for a given keywayd

discussed in the next sections. The outcome of our study is ta Keyword-block listsLp: the lists of blocks containing

define complexity ranges iRTI ME for each approach and to a given out-portap;.

demonstrate thavani i is a promising approach because it BL| NKS provides expansions for both forward and back-

shows lower computational complexity than the others. ward search. In fact, backward expansion is used to expand
The paper is organized as follows. Section Il briefly derom a keyword matching node to other nodes using inverse

scribes techniques and data structures usedBbyNKS, edges and forward expansion is used throughfther and

Sear chWebDB and Yani i . Section Il discusses in detail My x to infer if a path from a node to a keyword matching

the complexity of each framework and Section IV illustratesode within the block is sub-optimal, i.e. the path is optima

a comparison between them. Finally Section V sketches sofoe the solution having: as root.

conclusions and future work. b) SearchWebDB: Sear chWebDB [9] presents alterna-
tive techniques to solve the problem. First of all in the xidg
Il. STATE OF THE ART phase a graph reduction is applied, i.e. the initial datalyis

. reduced to yield to aummary graphhat contains only some
In this section, rather than discussing the different aRind of nodes and edges. Authors’ intuition is that only reode

proaches proposed in literature, we give in-depth detdils 0 : :)
the three approaches we study in this paper. representing classes need to be stored in the working memory

independently from th t. This is b d
a) BLINKS: BLI NKS [6] provides aBi-Level INdexing o cPoncon™y ITom e query request. [his 1S berause nodes

. representing entities and containing values are endimyegies
Keyword Searclapproach for data graph. To discusisl NKS for the graph, i.e. they are not connecting elements. Oree th

we have to introduceSingle-Level INdexing Keyword Searcr}un the algorithm with a query they compute taegmentation

(SLI NKS) first. SLI NKS works with two kinds of indexes that the summary graph is augmented with nodes and edges by

: . _ Which we can reach the keyword matching elements. The
is a set ofkeyword-node lists(L ik n) which keeps track of r(?gulting graph is callecaugmented summary grapfThe

Epr? nodes ;htat canf rezch a ?r';gg nzde mzijtchmg]\; keywog orithm does not return top-N sub-graphs as solutions but
€ second type of Index 1S e-keyword magMy k), _conjunctive queriesrom which the user can perform more

an hash table that stores the shortest distance betwesnopair

d dk d matchi 46 A ; precise selections. The final selection is submitted agath a
nodes and keyword matching nodese v andMy i represent 4 i computed using the database engine with an element-
together thesingle-level index

. o)) . to-query mapping. All the conjunctive queries correspomd t
Since this index containg| x K entries, wherelG| is g granhs of the augmented summary graph. Therefore top-

the number of nodes anl is the number of node matchingy; o eries can be compared against the top-N solutions of the
keyword, it is impractical for large graphs. To overcomesthlother keyword search algorithms.

problem, BLI NKS partitions the entire data graph in many now et us take a look at the data structures used to
sub-graphs cal!eblocks The E_il-Level Indfaxcon3|sts of the implements this approach. The searching is supported by a
top-level block indexand oneintra-block index The former ¢, 5o that allows to keep track of the visited paths. In detail,
maps information about nodes and keywords within the block, - ;rsorc is represented a&(n, k;, p, d, w) wheren is the
the latter indexes information inside the block similar k@ t oanh node just visiteds is the kzéy\;vo,rd matching element
single-level indexfor the whole data graph. The node-base%lom which the path startg; is the parent cursor of, d and
partitioning used irBLI NKS presents some nodes in common, enresent respectively the distance (length) and the dost o
between different blocks: these particular nodes are callg,o path. To a cursoe it corresponds the path between
portalsp;. They can bein-portalsin a block if they have at gnq 1 easily determined by a recursive traversing of parent
least one incoming edge from another blockoart-portalsit ¢ ,rsors. This characteristic is useful when we need to gemer
they have at least one outgoing edge to another block or bof,gssiple sub-graph solution withas root of the sub-graph.
More in detail, theintra-block indexcontains: In fact, we have to merge the paths starting framand
o Intra-block keyword-node list$ k v : the lists of nodes in terminating in at least one matching keyword element.
a given block that can reach a given keyword matching c¢) Yanii: Yani i [4] is based on a clustering approach.
node without leaving the block. A cluster is a partition over paths in the graph starting from

a root and ending into a node matching a keyword. Wte lower bound distances from to individual keywords.
mean root as a node without incoming edges and we calerefore:
such pathsinformative paths Each path corresponds to a

template, i.e. the ordered list of label on the edges in the @

path. Each template defines a cluster and consequentlyeall th sumDist(u) = » Dist;(u) € O(|Q)|)
paths with the corresponding template belongs to it. In orde =0

to retrieve efficiently informative paths into a graph, wes us Q|

Lucené to index the data graph. An interesting characteristic sumLBDist(u) = ZLBDisti(u) c0(Q|)
of Yani i is that it computes top-N solutions in the first N i—0

iterations of the algorithm, one solution at each iteratikdn
combines solutions by merging the highest-scoring paths fr
the several clusters, in general one path of each cluster
each solution. It merges more paths from the same clusjer] X

in the case of the same scoringani i has an off-line pre- ZEZZE?) B gﬂ : gg?;lmLBDlst) € 0(|Q)).
processing step in which an index structure associatingt r?mes[gQ ~ 34]) O(su.mDist) c 0(1Q)
node with values (possible keywords) is built. Th&fani i ’ '
has an on-line process composed of the following steps: g?
the query submission for the path retrieval, (ii) the cltistp h
and (iii) the construction of the top-N solutions.

Aboutvi si t Node we can say
4@'7165[21 — 27]: O(|Q]) because it computes two hash table

or
ccesses and one updatg € Q.

nce those lines are in drf -t hen- el se instruction, we
aveO(visitNode) € O(|Q| + |Q]) = O(|Q)).

Forlines[2—5] we haveO(|Q| x B) because iines[2— 5]
[1l. COMPLEXITY OF KEYWORD SEARCH the algorithm createlg)| queues and for each of them it inserts

Formally, the problem we are trying to solve may be defindd(B) times a cursor in it. But if one considers that there is
as follows. Given a directed graphi = (V, E), where each only one queue insertion for each matching element, then we

node (resource) € V and each edge (property)s E present NaveO(|Q| + K). Since|Q| < K, then we conclude) (k)

a label (i.e. the URI of the resource, the name of the propert}f’ “”?S[Q — 5. o
a queryQ composed of a set of keywords, . . . , g, we find In lines[6 — 17] we need to distinguish between portals
the answerss,, . .., Sy to Q wheresS; is a subgraph of7. ~ @nd normal nodes;.
Following this scenario, we study the complexity of the « Nodesp;:
approaches presented above. Such complexity is evaluated i line[10] : O(visitNode) € O(|Q]).
terms of the number of basic operations to compute in the lines[11 —14] : O(B).
worst case. Due to space constraints, we do not report the [line[16]: O(|RC| — |A|) x O(sumLBDlist).
algorithms of the approaches but during the analysis we make
exact reference to the lines of corresponding pseudo-dades ~ Since O(|RC|) € O(|G|), O(JA]) € O(N),
the respective works [6], [9], [4]. O(sumLBDlist) € O(|Q]), and |G| > N, then in
Let us introduce the notation we use: line[16] we haveO(|G| x [Q)).
« N number of solutions. We remind the so-called.emma 1 of BLI NKS: "the
« |Q[: length of Q (i.e. number of keywords; € Q). number of cursors opened by _searchBLINKS for each
« |G|: number of nodes in the gra. query keyword is O(P), where P is the number of portals
in the partitioning of the data graghHence, considering
A. BLINKS line[11] and Lemma 1, iterations onlines[6 — 17] are at

In this section we show that the complexity BEI NKS is most|Q| x P, i.e. a portalp; cannot be traversed more
O(BLINKS) € O(|G)? x |Q|?). With respect to the previous than once for each keyworg
notation, we have to introduce the following terms:

o K: number of matching elements BLI NKS.

o B: number of blocks in thé&Ll NKS partition.

o P: number of portal;.

o R: number of roots in the grapf'.

o |A]: number of current determined solutions

o |RC|: number of candidates to be solution

The search algorithm oBLI NKS (i.e. sear chBLI NKS)
calls a main procedurei si t Node that is supported by the
functions sunDi st and sunlLBDi st. For a nodeu, just
visited but not yet determined as the root of a solution,éhe$© SUM up,
functions are used, respectively, to calculate the distamzl

o Nodesu;:
line[10] : O(visitNode) € O(|Q)).
line[11 — 14] : O(1) because.PB(u) = § in the worst
case.
line[16] : O(|G| x |Q|) as showed above.

Iterations on these nodes ocdUiZ| x |Q|) — (|Q| x P),
because the total number of iterations is less than the
number of iterations for the portals.

the global complexity results as follows:

lines[2 — 5] : O(K)
Yhttp:/ /1 ucene. apache. or g/ j aval/ docs/ lines[6 — 17] : O((|Q] x P) x (|Q|+ B + (|G| x |Q)))), for

the iterations on portalg; that keeps track of his parent cursor, which, recursively,

lines[6 — 17] : O((|G| x |Q] — Q] x P) x (|G| x |Q))), for defines a path up to some element matching a keyword.

the iterations on nodes; For each nodd{ cursors can be generated at most. Then
we haveO(K).

Considering thatG| > 1, |G| > B,|Q| > 1 we have: e In lines[11 — 16], we haveO(N), where we can ignore

function maptoQuery having constant complexity.
lines[6 —17] : O((|Q] x P) x O(|G| x |Q])), for the iterations Sincelines[11 — 16] are executed only if the top-N solutions

on portalsp; are found (i.e. only once in the execution), we do not in-
lines[6 —17] : O((|G] x |Q[— Q[x P) x O(|G| x |Q])), for clude the complexity of this block in the study. Therefore
the iterations on nodes; O(TOP —N) € O(K).

Going back to the procedulSEARCH, in lines[1 — 6] we
Furthermore, becausk < |G]: have O(|Q| x max{ki, ka,..., kg }) becausevq; € Q the

2 2 2 2 algorithm computesk; basic inserts. However a cursor is
O(BLINKS) € O(K+|GI"X|Q = QI x|GIx P+[QIx|G[xP) inserted for each matching element, then the complexity in
€ O(|GI* x |Q]*). lines[1 — 6] is O(K). Analyzinglines[7 — 27], in the worst
case the condition dfine[10] fails at all iterations. This makes
ineffective the heuristieninCostCursor atline[8], implying

that all the cursors generated by the algorithm have to be
"WRiracted later from their respective queues. This meaats th
Cfterations inlines[7 — 27] will be computed once for each

with Ilmortﬁ kneKyW'(\)/lrds. Thlst|hs a strongt_pro?f S'd@ 'Sj[mf;]cr; enerated cursor, where the total number of generatedrsurso
smatler thani . Vioreover thé computing time 1S not aflecteqy |G| x K (sincelines[1 — 6] generatedy cursors). Therefore

by the block size of the partitioning. Authors state thatrgue; lines[7 — 27] we haveO(|G| x K) x O(TOP — N) €
response times longer than 90 seconds are trunked. Thissme@ G| x K2).

that in some case the algorithm down-performs the averagg we consider K > 1, the global complexity of the
behavior. We believe that the problem relies in aiming E%tlgorithm is: -7

finding the exact matching sub-graph which tend easily to fal

in the worst case scenario. In fact if there is no matching O(SearchWebDB) € O(AUGMENTATION) + O(SEARCH)
keyword node for at least one keyword the algorithm cannot 2 2

return an answer due to the conditionlime[16], and neither € O(K) + O(|G] x K7) € O(K + |G| x K7)

prune the search itine[28]. It just can return for the condition € O(|G| x K?)

into thewhi | e instruction that means exploring all the search As for BLI NKS, complexity of Sear chWbDB is aligned
Space. with the experiments presented in [9]. The complexity of
B. SearchWebDB Sear chWebDB is independent from the query length. How-
ever authors noticed better performance when the number of
keyword is large and it can correspond averagely to a large
K. Additionally authors say that there is a linear dependence
on N that we did not demonstrate because we analyzed the
worst case which did not take into account pruning condgtion

. In fact we considered=| instead ofS, which is supposed to

« K: number of matching elements. be much smaller thafz|. On the other hand, we noticed that

« 52 number of augmented summary graph nodes. query processing time increases whén changes for a given
We show that such complexity iSO(AUGMENTATION) + N > 3. In particular in top-20 cases the query processing time

O(SEARCH)) € O(|G| x K?). In this approach, we shoulddoes not increase linearly in the query length, but is (ajinos
considerS as the number of nodes in the exploration, i.e. th@adratic.

number of augmented summary graph nodes we use for top-N

The complexity result we obtain foBLI NKS is aligned

However BLI NKS shows longer response time for queri

The complexity of Sear chWebDB should consider the
augmentation of the summary graphUGVENTATI ON) and
the Top-N query computatioSEARCH). We have to introduce
the following terms:

o k;: number of elements matching the keywagd

query retrieval. Moreover, because we are analyzing thestwof: Yanii

case, we considaD(S) € O(|G)). In this section we discuss the complexity 6&ni i . We
O(AUGMENTATION) € O(K) because we have to inseit introduce the following terms

elements to generate the summary graph. o C: number of clusterg; € CL.

The procedur&EARCH s supported by the functiohOP- N o T number of pathg, € PT.
for the query computation. Referring to this function, wg sa we show tha(Yanii) € O(C'x T'). This result is the sum
e In lines[l — 7] TOP- N possibly completes a sub-graphof complexities in three sub-phases of the on-line commrtat
by merging the paths from the given connecting eleme6t(QUERYSUBMISSION) + O(CLUSTERING) 4+ O(BUILDING).
and to some keyword element. In the algorithm a path canSince there is direct access to each keyword through the
be computed efficiently due to the presence of a cursodex, O(QUERYSUBMISSION) € O(|Q)).

With respect to [4] we improved the clustering phase &8)}. Given that most of time€' > N, we result the final
shown in the Algorithm 1. complexity:

O(Yanii) € O(C x T).

Algorithm 1: Clustering of Informative Paths

Input : An List PT of informative paths, a quer@ i i)
Output: A Priority QueueCL of clusters We now compare the results obtained in the previous

section. Recall that:

IV. COMPARISON

1 CL' — CreateSet () ;

2 PT' « subsumedDelete(T); O(BLINKS) € O(|Q|* x |G/*)

3 while PT" is not emptydo)

4 PT - {pt}: O(SearchWebDB) € O(|G]| x K?)

5 if ACI; € CL": pt =~ toy, then ..

6 Enqueue(pt, Scor e(ptQ), Cl;) ; O(Yanii) € O(C < T)

7 | Updat eScore(Cl)) ; Comparison can be performed in two ways: (i) by expressing

8 else relations between the terms of all complexities, or (ii) by a

9 Cl; — CreateC uster (pt); pairwise comparison. We present both manners.

10 Enqueue(pt, Scor e(pt.Q), CL) ; Comparison with relations: in this case we have to define

11 cL' u{cu); somerelationsbetween the different terms used in each study.
. In Table 1 we show such relations between the terms we

12 CL « OrderCl usters(CL); used in our study and provide the resulting complexities. We

13 return CL,; now explain each single relation taking into account that we

combined them in some case.

e T' = R x K: it means that we can reach a keyword

In lines[5 — 7] the algorithm checks if there exists a cluster X))
matching node from all the roots with different paths.

Cl; matching the path template. Hence we hawg’). In X -
lines[8 — 11] we haveO(1). In lines[3 — 11] the iteration is It is an average/worst case fofani i because we can

computed for each path (i times). As a consequence, the ~ Nave more than one path starting from a given root to a
complexity in lines[3 — 11] is T x O(C) € O(T x C). In keyword matching node but even no paths connecting a

line[12] we obtainO(C' x log2C) to order the queue. Finally root to a. I.<eyword matching node.))
O(CLUSTERING) € O(T x C) +O(C x log, C). Knowing that « T = K: it means that each path contains a different

C,T >1andT > C thenO(CLUSTERING) € O(T x C). kgyword matching node. It is a good case fani i

Referring toBUI LDl NG, we have since usually there are more paths sharing the same
keyword.

lines[d — 6] : O(1). e U=K:it means that we have a plifferent cluster for each

line[8] : O(T). keyword matching element. In Fhls case we are dependent

lines[12 — 15] : O(T) on data graph structure even if usually< K.

lines[16 — 17] : O(T) « K2 = Q% 1Q] = K: they mean that we have

lines[18 — 21] : O(1) one keyword matching element for each keyward

Sear chWebDB take advantages againBL| NKS with

In lines[9 — 22] we consider the complexity dines[12 — these relations since usual| < K.

15] and the maximum complexity between executions in * _T: ‘_?: !t means that all the nodes in the data graph are
lines[16 —17] andlines[18 —21]. Since we have iterations, involved in & path and one node cannot belong to more
in lines[9 — 22] we haveC x (O(T) + O(T)). Notice that in than one path. This is a very extreme case.

lines[12 — 15] and lines[16 — 17] we iterate all the paths at Using these relations we produce six different cases, as
most. Hence we havé(T") and O(T), and, consequently, in Shown in Table 1. In particular the cases (5) and (6) result
lines[9 — 22] the complexity isO(T) + O(T) € O(T). In from the combination of the previous ones. Such cases ylearl
lines[24 — 26] we haveO(C) because we just iterate on theshow the complexity ranges of each approach. Using an
visited cluster list. Sinc&/Cl : Ipt € PT = T > C, final ~approximation measure of complexity we can say:

complexity becomes o O(BLINKS) € [O(d?),0(d*)]
« O(SearchWebDB) € [O(d?), O(d?)]
O(BUILDING) € N x (O(1) +O(T) + O(T) + O(C)) « O(Yanii) € [O(d), O(d?)]
€N xO(T) € O(N xT) This is a relevant result. All the presented algorithms are

promising representative of an efficient solution for keyavo
We can conclude that the overall complexity Ydini i is based search iRTI ME class complexity. However we demon-
O(QUERYSUBMISSION) + O(CLUSTERING) + O(BUILDING) € strated howyani i is more efficient with respect to the others,
o(QN+O0(T xC)+O(N xT) € max{O(T x C),O(N x presenting a quadratic complexity as upper-bound.

case BLI NKS Sear chWebDB | Yani i

(1)) T=Rx K O(IQ]2 x |G]?) | O(K? x |G]) O(Rx K x C)
@).T=K O(QZ < |G%) | O(KZX|G]) O(K x C)
(3).C=K O(|Q]2 x |G]?) | O(K? x |G]) O(T x K)

@ K?=|QP, T=RxK O(K?2 x|G]?) | O(K? x|G]) O(Rx K x C)
(5).T=K,C=K,|Q =K O(G)?2 x K2) | O(]G] x K?) O(K?)

©.7=1 0=K.c=K [o(ePx|GP?) | oleP xIc) | ok xE) =o(a)

TABLE |
COMPARISON WITH RELATIONS

Pairwise Comparison: we demonstrate that: Hence, we infer that in a real case:

O(BLINKS) > O(SearchWebDB) > O(Yanii) O(T) < O(S x K) = O(SearchWebDB) > O(Yanii)

. . . . BLINKSvsYanii:
By comparing the complexity result from previous sections,
for the algorithms we havg: From the previous resulté)(SearchWebDB) > O(Yanii)
BLI NKS vs Sear chVébDB: and O(BLINKS) > O(SearchWebDB). Hence we deduce

O(BLINKS) > O(Yanii).
2
O(|G| x K) = O(K x K) Given the above results, we can make the following call:

O(IQP x|GI?) o(Ql x |Q x |G]) y
O(BLINKS) > O(SearchWebDB) > O(Yanii)
In a very extreme case we have that each node of the graph
V. CONCLUSION AND FUTURE WORK

matches the query (i.e. all keywords). Therefore:
We have precisely described the computational complexity
O(K x K) = 0(|Q] x Q[x |G]) of three representative approaches to keyword based search
over graph structures. We have identified reference messure
that allow comparison of computational complexity. Our re-
O(K?) < O(|Q|>x|G|) = O(BLINKS) > O(SearchwebDB) Sults show that¥ani i shows the lowest computational cost
among the approaches considered, which is an indication
Sear chWebDB vs Yani i : of the potentiality behind the intuition ifvani i . A lower
complexity means that the approach is less susceptible to
In this case we consider agathinstead of|G| to be more variations of the keyword search setting. From a theoretica
effective. Therefore we us®(C x T') and O(S x K?). We point of view, future directions focus on improving the sgar
separately compam@(7T') againstO(S x K') andO(C') against algorithm of Yani i to reach a linear time complexity.
O(K). First of all we can sa¢’ < K because in the worst case
efach matching key_/vord ellement corresponds to a path havin%:\ S. Agrawal, S. Chaudhuri, G. Das, DBXplorer: enablingyierd
different template (i.e. a different cluster). Furthermure can search over relational databases I Cont. on Management of Data
considerO(C) € O(K) that allows to focus the comparison (SIGMOD'02), pp. 627, Wisconsin, US2002.
on O(T) againstO(S x K). In fact, C < T and K < K x [2] G. Bhalotia, Hulgeri, A., Nakhe, C., Chakrabarti, S.,d8shan, S.

From this result, we infer that in a real case:

REFERENCES

2 Keyword Searching and Browsing in Databases using BANKSInin
5%. In an extreme case we have that fOI’_ each nadef the Conf. on Data Engineering (ICDE’'02), pp. 431-440, CA, USRA02.
summary graphsg) and for each matching elemen we [3] S. Cohen, J. Mamou, Kanza, Y., Sagiv, Y. XSEarch: A Seina®earch
have an informative pathpt such thatpt starts withv, (i.e. Engine for XML. InInt. Conf. on Very Large DataBase (VLDB'03), pp.

. . 45-56, Germany2003.
the root of the path) and ends in. (i.e. the last node of 14 g’ pe' vigiio, P. Cappellari, M. Miscione. Cluster-b exploration

the path), where there doesn'’t exist an informative path for Effective Keyword Search over Semantic Datasetsintn Conf. on

ending intov, (we denote withlast(pt')), that subsumept Conceptual Modeling (ER'09), pp. 205-218, Brazi009.

; ; M) th d [5] L. Guo, Shao, F., Botev, C., Shanmugasundaram, J. XRAR&nked
(I'e' pt<p) n other words Keyword Search over XML Documents. Int. Conf. on Management
of Data (SIGMOD'03), pp. 16-27, US/&R003.

Y. € sq.Yv [6] H. He, H. Wang, J. Yang, P.S. Yu. BLINKS: ranked keyworcshes
¢ 9, VUk on graphs.. Innt. Conf. on Management of Data (SIGMOD’07), pp.
305-316, China2007.
dpte PT ipt=wve—...— v [7] V. Hristidis, Papakonstantinou, Y. DISCOVER: Keyworce&ch in
Relational Databases. Int. Conf. on Very Large DataBase (VLDB'02),
andfpt’ € PT : pt <pt’,last(pt’) = v pp. 670-681, China2002.

[8] Kaushik, R., Krishnamurthy, R., Naughton, J.F., Ransilman, R. On
the integration of structure indexes and inverted lists.nin Conf. on
Management of Data (SIGMOD’04), pp. 779-790, Fran2e04.
[9] T. Tran, H. Wang, S. Rudolph, P. Cimiano. Top-k Explasatiof Query
O(T) Candidates for Efficient Keyword Search on Graph-Shaped-|RIata.
m = In Int. Conf. on Data Engineering (ICDE’09), pp. 405-416, Gii2009.

In this case we have

