
Keyword based Search over Semantic Data in
Polynomial Time

Paolo Cappellari#1, Roberto De Virgilio∗2, Antonio Maccioni∗3, Michele Miscione∗4

∗Dipartimento di Informatica e Automazione, Universitá Roma Tre, Rome, Italy
2devirgilio@dia.uniroma3.it, 3maccioni@dia.uniroma3.it, 4miscione@dia.uniroma3.it

#Department of Computing Science, University of Alberta, Canada
1cappellari@cs.ualberta.ca

Abstract— In pursuing the development of Yanii, a novel
keyword based search system on graph structures, in this paper
we present the computational complexity study of the approach,
highlighting a comparative study with actual PTIME state-of-
the-art solutions. The comparative study focuses on a theoretical
analysis of different frameworks to define complexity ranges,
which they correspond to, in the polynomial time class. We
characterize such systems in terms of general measures, which
give a general description of the behavior of these frameworks
according to different aspects that are more general and informa-
tive than mere benchmark tests on a few test cases. We show that
Yanii holds better performance than others, confirming itself as
a promising approach deserving further practical investigation
and improvement.

I. I NTRODUCTION

Nowadays data is disseminated in a number of different
sources, from databases systems to the Web, from a tradi-
tional structured organization (relational) to a semi-structured
(XML), up to the unstructured ones (text in Web documents).
Although availability of data is constantly increasing, one
principal difficulty users have to face is to find and retrieve
the information they are looking for. To precisely access data,
a user should know how data is organized in the source, and
how to write a query in the language required by the source.
Clearly, this represents an obstacle to information accessto not
expert users. For this reason keyword-based search systems
are increasingly capturing the attention of researchers. In fact,
there are approaches building on top of traditional systems,
like DBMSs: the goal is to free users from knowing the details
of the query language or of the structure (schema) of the data.

Keyword based search has been applied to traditional re-
lational sources, XML contexts and graph-based structures.
Examples of systems developed for relational sources are
BANKS [2], DISCOVER [7] and DBXplorer [1]. In XML
context we find works likeXsearch and Xrank as well
as others like the ones from Kaushik et al., respectively [3],
[5]. All of these works (in any context) exploit one main
advantage: data can be represented in trees. This simplifiesthe
problem. In a more general representation, data are represented
by a graph, requiring more efficiency and accuracy of the
solution. This modeling approach is living a great momentum
because: (i) data from disparate sources can be modelled
with a graph structure, (ii) information search can be realized

as a graph exploration, the latter being a topic counting
many known techniques. In this context, a combination of
IR and graph exploration techniques are used to discover the
information matching the keywords and to rank it in a way that
is more relevant for the user. In these frameworks, generally,
the first (sub-)goal is to identify the portion of the graph
holding information matching the keywords, possibly relying
on a sophisticated index structure. Then, the second (sub-)goal
is to search for a connection between such graph portions in
order to build the most complete answers (or solutions) given
the keywords. Finally, third (sub-)goal, the identified solutions
are ranked according to the relevance for the user and then
returned.

Navigating graph structures while building and ranking
candidate solutions hides a number of difficulties, especially
from a performance point of view. Because systems have
to be fast in returning their answers back to users, many
approaches implement heuristic pruning techniques to reduce
the search space on the graph, or greedy-like techniques to (try
to) aim directly to the most promising solution, or threshold
techniques to cut less promising solutions (Top-K approaches).

While all these techniques can lead to the development of
systems that perform reasonably well in many practical cases,
not much attention is given to the study of the computational
complexity of keyword-based search approaches. Most papers
present the evaluation of their approach in terms of perfor-
mance comparisons (benchmark tests) with respect to other
competing approaches. Usually, a few test cases are designed,
run on the different systems with performance of each system
traced and reported. While this is a genuine evaluation of a
system, it does not describe how an alteration of the setting
(size of a query, size of the graph, and so on) affects the
performance.

In this paper we want to analyze the problem from a
theoretical point of view. We study and compare three re-
cent approaches to keyword-based search on graph structures:
BLINKS [6], SearchWebDB [9] and Yanii [4]. We focus
on them for two reasons: (i) they each represent a different
keyword search evaluation paradigm, (ii) they are the only
ones with computational complexity, as is detailed later, in
PTIME. BLINKS is an example of an approach based on a
sophisticated index structure, which enables fast identification

of the graph portion relevant for the results.SearchWebDB
is an example of exploitation of the graph structure to build
promising queries that should return information of interest for
the user.Yanii is an example of a clustering approach with
an off-line indexing that enables a low runtime execution cost
in which solutions are combined and returned starting from
the most promising, descending monotonically.

In the discussion we are interested in obtaining a description
of the systems in terms of a number of different measures
like the size of the input query, the size of the search space,
the number of maximum solutions returned, and others as
discussed in the next sections. The outcome of our study is to
define complexity ranges inPTIME for each approach and to
demonstrate thatYanii is a promising approach because it
shows lower computational complexity than the others.

The paper is organized as follows. Section II briefly de-
scribes techniques and data structures used byBLINKS,
SearchWebDB and Yanii. Section III discusses in detail
the complexity of each framework and Section IV illustrates
a comparison between them. Finally Section V sketches some
conclusions and future work.

II. STATE OF THE ART

In this section, rather than discussing the different ap-
proaches proposed in literature, we give in-depth details of
the three approaches we study in this paper.

a) BLINKS: BLINKS [6] provides aBi-Level INdexing
Keyword Searchapproach for data graph. To discussBLINKS
we have to introducesSingle-Level INdexing Keyword Search
(SLINKS) first. SLINKS works with two kinds of indexes that
keep information about the data graph. The first type of index
is a set ofkeyword-node lists(LKN) which keeps track of
the nodes that can reach a given node matching a keyword.
The second type of index is thenode-keyword map(MNK),
an hash table that stores the shortest distance between pairs of
nodes and keyword matching nodes.LKN andMNK represent
together thesingle-level index.

Since this index contains|G| × K entries, where|G| is
the number of nodes andK is the number of node matching
keyword, it is impractical for large graphs. To overcome this
problem,BLINKS partitions the entire data graph in many
sub-graphs calledblocks. The Bi-Level Index consists of the
top-level block index and oneintra-block index. The former
maps information about nodes and keywords within the block,
the latter indexes information inside the block similar to the
single-level indexfor the whole data graph. The node-based
partitioning used inBLINKS presents some nodes in common
between different blocks: these particular nodes are called
portalspi. They can bein-portals in a block if they have at
least one incoming edge from another block orout-portalsif
they have at least one outgoing edge to another block or both.
More in detail, theintra-block indexcontains:

• Intra-block keyword-node listsLKN : the lists of nodes in
a given block that can reach a given keyword matching
node without leaving the block.

• Intra-block node-keyword mapMNK : the shortest dis-
tances between pairs of nodes within a block.

• Intra-block portal-node listsLPN : the lists of nodes in a
given block that can reach a given out-portal node within
block without leaving the block.

• Intra-block node-portal distance mapDNP : the shortest
distances between a given node in a block and his closest
out-portal within the block.

While theblock indexcontains:
• Keyword-block listsLKB: the lists of blocks containing

keyword matching nodes for a given keywordqi.
• Keyword-block listsLPB: the lists of blocks containing

a given out-portalpi.
BLINKS provides expansions for both forward and back-

ward search. In fact, backward expansion is used to expand
from a keyword matching node to other nodes using inverse
edges and forward expansion is used through theDNP and
MNK to infer if a path from a nodeu to a keyword matching
node within the block is sub-optimal, i.e. the path is optimal
for the solution havingu as root.

b) SearchWebDB: SearchWebDB [9] presents alterna-
tive techniques to solve the problem. First of all in the indexing
phase a graph reduction is applied, i.e. the initial data graph is
reduced to yield to asummary graphthat contains only some
kind of nodes and edges. Authors’ intuition is that only nodes
representing classes need to be stored in the working memory,
independently from the query request. This is because nodes
representing entities and containing values are ending elements
for the graph, i.e. they are not connecting elements. Once they
run the algorithm with a query they compute theaugmentation:
the summary graph is augmented with nodes and edges by
which we can reach the keyword matching elements. The
resulting graph is calledaugmented summary graph. The
algorithm does not return top-N sub-graphs as solutions but
conjunctive queriesfrom which the user can perform more
precise selections. The final selection is submitted again and
it is computed using the database engine with an element-
to-query mapping. All the conjunctive queries correspond to
sub-graphs of the augmented summary graph. Therefore top-
N queries can be compared against the top-N solutions of the
other keyword search algorithms.

Now, let us take a look at the data structures used to
implements this approach. The searching is supported by a
cursor that allows to keep track of the visited paths. In detail,
a cursorc is represented asc(n, ki, p, d, w) where n is the
graph node just visited,k is the keyword matching element
from which the path starts,p is the parent cursor ofc, d and
w represent respectively the distance (length) and the cost of
the path. To a cursorc it corresponds the path betweenn
and k, easily determined by a recursive traversing of parent
cursors. This characteristic is useful when we need to generate
a possible sub-graph solution withn as root of the sub-graph.
In fact, we have to merge the paths starting fromn and
terminating in at least one matching keyword element.

c) Yanii: Yanii [4] is based on a clustering approach.
A cluster is a partition over paths in the graph starting from

a root and ending into a node matching a keyword. We
mean root as a node without incoming edges and we call
such pathsinformative paths. Each path corresponds to a
template, i.e. the ordered list of label on the edges in the
path. Each template defines a cluster and consequently all the
paths with the corresponding template belongs to it. In order
to retrieve efficiently informative paths into a graph, we use
Lucene1 to index the data graph. An interesting characteristic
of Yanii is that it computes top-N solutions in the first N
iterations of the algorithm, one solution at each iteration. It
combines solutions by merging the highest-scoring paths from
the several clusters, in general one path of each cluster for
each solution. It merges more paths from the same cluster
in the case of the same scoring.Yanii has an off-line pre-
processing step in which an index structure associating a root
node with values (possible keywords) is built. Then,Yanii
has an on-line process composed of the following steps: (i)
the query submission for the path retrieval, (ii) the clustering
and (iii) the construction of the top-N solutions.

III. C OMPLEXITY OF KEYWORD SEARCH

Formally, the problem we are trying to solve may be defined
as follows. Given a directed graphG = (V, E), where each
node (resource)v ∈ V and each edge (property)e ∈ E present
a label (i.e. the URI of the resource, the name of the property),
a queryQ composed of a set of keywordsq1, . . . , qm, we find
the answersS1, . . . , Sk to Q whereSi is a subgraph ofG.

Following this scenario, we study the complexity of the
approaches presented above. Such complexity is evaluated in
terms of the number of basic operations to compute in the
worst case. Due to space constraints, we do not report the
algorithms of the approaches but during the analysis we make
exact reference to the lines of corresponding pseudo-codesin
the respective works [6], [9], [4].

Let us introduce the notation we use:

• N : number of solutions.
• |Q|: length ofQ (i.e. number of keywordsqi ∈ Q).
• |G|: number of nodes in the graphG.

A. BLINKS

In this section we show that the complexity ofBLINKS is
O(BLINKS) ∈ O(|G|2 × |Q|2). With respect to the previous
notation, we have to introduce the following terms:

• K: number of matching elements inBLINKS.
• B: number of blocks in theBLINKS partition.
• P : number of portalspi.
• R: number of roots in the graphG.
• |A|: number of current determined solutions
• |RC|: number of candidates to be solution

The search algorithm ofBLINKS (i.e. searchBLINKS)
calls a main procedurevisitNode that is supported by the
functions sumDist and sumLBDist. For a nodeu, just
visited but not yet determined as the root of a solution, these
functions are used, respectively, to calculate the distance and

1http://lucene.apache.org/java/docs/

the lower bound distances fromu to individual keywords.
Therefore:

sumDist(u) =

|Q|∑

i=0

Disti(u) ∈ O(|Q|)

sumLBDist(u) =

|Q|∑

i=0

LBDisti(u) ∈ O(|Q|)

About visitNode we can say
lines[21 − 27]: O(|Q|) because it computes two hash table
accesses and one update∀qi ∈ Q.
lines[28− 29] : O(sumLBDist) ∈ O(|Q|).
lines[30− 31] : O(1).
lines[32− 34] : O(sumDist) ∈ O(|Q|).

Since those lines are in anif-then-else instruction, we
haveO(visitNode) ∈ O(|Q|+ |Q|) = O(|Q|).

For lines[2−5] we haveO(|Q|×B) because inlines[2−5]
the algorithm creates|Q| queues and for each of them it inserts
O(B) times a cursor in it. But if one considers that there is
only one queue insertion for each matching element, then we
haveO(|Q| + K). Since|Q| ≤ K, then we concludeO(K)
in lines[2− 5].

In lines[6− 17] we need to distinguish between portalspi

and normal nodesui.

• Nodespi:
line[10] : O(visitNode) ∈ O(|Q|).
lines[11− 14] : O(B).
line[16] : O(|RC| − |A|)×O(sumLBDlist).

Since O(|RC|) ∈ O(|G|), O(|A|) ∈ O(N),
O(sumLBDlist) ∈ O(|Q|), and |G| ≫ N , then in
line[16] we haveO(|G| × |Q|).
We remind the so-calledLemma 1 of BLINKS: ” the
number of cursors opened by searchBLINKS for each
query keyword is O(P), where P is the number of portals
in the partitioning of the data graph”. Hence, considering
line[11] andLemma 1, iterations onlines[6− 17] are at
most |Q| × P , i.e. a portalpi cannot be traversed more
than once for each keywordqi

.
• Nodesui:

line[10] : O(visitNode) ∈ O(|Q|).
line[11− 14] : O(1) becauseLPB(u) = ∅ in the worst
case.
line[16] : O(|G| × |Q|) as showed above.

Iterations on these nodes occur(|G| × |Q|)− (|Q| × P),
because the total number of iterations is less than the
number of iterations for the portals.

To sum up, the global complexity results as follows:

lines[2− 5] : O(K)
lines[6− 17] : O((|Q| × P)× (|Q|+ B + (|G| × |Q|))), for

the iterations on portalspi

lines[6− 17] : O((|G| × |Q| − |Q| × P) × (|G| × |Q|)), for
the iterations on nodesui

Considering that|G| > 1, |G| ≥ B, |Q| ≥ 1 we have:

lines[6−17] : O((|Q|×P)×O(|G|× |Q|)), for the iterations
on portalspi

lines[6− 17] : O((|G| × |Q| − |Q| ×P)×O(|G| × |Q|)), for
the iterations on nodesui

Furthermore, becauseK ≤ |G|:

O(BLINKS) ∈ O(K+|G|2×|Q|2−|Q|2×|G|×P+|Q|2×|G|×P)

∈ O(|G|2 × |Q|2).

The complexity result we obtain forBLINKS is aligned
with the experimental results authors present in [6]. Thereis
no dependence on the number of keyword matching elements.
However BLINKS shows longer response time for queries
with more keywords. This is a strong proof since|Q| is much
smaller thanK. Moreover the computing time is not affected
by the block size of the partitioning. Authors state that query
response times longer than 90 seconds are trunked. This means
that in some case the algorithm down-performs the average
behavior. We believe that the problem relies in aiming at
finding the exact matching sub-graph which tend easily to fall
in the worst case scenario. In fact if there is no matching
keyword node for at least one keyword the algorithm cannot
return an answer due to the condition inline[16], and neither
prune the search inline[28]. It just can return for the condition
into thewhile instruction that means exploring all the search
space.

B. SearchWebDB

The complexity ofSearchWebDB should consider the
augmentation of the summary graph (AUGMENTATION) and
the Top-N query computation (SEARCH). We have to introduce
the following terms:

• ki: number of elements matching the keywordqi.
• K: number of matching elements.
• S: number of augmented summary graph nodes.

We show that such complexity is (O(AUGMENTATION) +
O(SEARCH)) ∈ O(|G| × K2). In this approach, we should
considerS as the number of nodes in the exploration, i.e. the
number of augmented summary graph nodes we use for top-N
query retrieval. Moreover, because we are analyzing the worst
case, we considerO(S) ∈ O(|G|).

O(AUGMENTATION) ∈ O(K) because we have to insertK

elements to generate the summary graph.
The procedureSEARCH is supported by the functionTOP-N

for the query computation. Referring to this function, we say

• In lines[1 − 7] TOP-N possibly completes a sub-graph
by merging the paths from the given connecting element
and to some keyword element. In the algorithm a path can
be computed efficiently due to the presence of a cursor

that keeps track of his parent cursor, which, recursively,
defines a path up to some element matching a keyword.
For each nodeK cursors can be generated at most. Then
we haveO(K).

• In lines[11− 16], we haveO(N), where we can ignore
functionmaptoQuery having constant complexity.

Sincelines[11− 16] are executed only if the top-N solutions
are found (i.e. only once in the execution), we do not in-
clude the complexity of this block in the study. Therefore
O(TOP− N) ∈ O(K).

Going back to the procedureSEARCH, in lines[1− 6] we
haveO(|Q| × max{k1, k2, . . . , k|Q|}) because∀qi ∈ Q the
algorithm computeski basic inserts. However a cursor is
inserted for each matching element, then the complexity in
lines[1− 6] is O(K). Analyzing lines[7− 27], in the worst
case the condition ofline[10] fails at all iterations. This makes
ineffective the heuristicminCostCursor at line[8], implying
that all the cursors generated by the algorithm have to be
extracted later from their respective queues. This means that
iterations in lines[7 − 27] will be computed once for each
generated cursor, where the total number of generated cursors
is |G|×K (sincelines[1−6] generatedK cursors). Therefore
in lines[7 − 27] we haveO(|G| × K) × O(TOP − N) ∈
O(|G| ×K2).

If we consider K ≥ 1, the global complexity of the
algorithm is:

O(SearchWebDB) ∈ O(AUGMENTATION) + O(SEARCH)

∈ O(K) + O(|G| ×K2) ∈ O(K + |G| ×K2)

∈ O(|G| ×K2)

As for BLINKS, complexity ofSearchWebDB is aligned
with the experiments presented in [9]. The complexity of
SearchWebDB is independent from the query length. How-
ever authors noticed better performance when the number of
keyword is large and it can correspond averagely to a large
K. Additionally authors say that there is a linear dependence
on N that we did not demonstrate because we analyzed the
worst case which did not take into account pruning conditions.
In fact we considered|G| instead ofS, which is supposed to
be much smaller than|G|. On the other hand, we noticed that
query processing time increases when|Q| changes for a given
N > 3. In particular in top-20 cases the query processing time
does not increase linearly in the query length, but is (almost)
quadratic.

C. Yanii

In this section we discuss the complexity ofYanii. We
introduce the following terms

• C: number of clustersci ∈ CL.
• T : number of pathspi ∈ PT.
We show thatO(Yanii) ∈ O(C×T). This result is the sum

of complexities in three sub-phases of the on-line computation:
O(QUERYSUBMISSION) + O(CLUSTERING) + O(BUILDING).

Since there is direct access to each keyword through the
index,O(QUERYSUBMISSION) ∈ O(|Q|).

With respect to [4] we improved the clustering phase as
shown in the Algorithm 1.

Algorithm 1 : Clustering of Informative Paths

Input : An List PT of informative paths, a queryQ
Output : A Priority QueueCL of clusters

CL′ ← CreateSet() ;1

PT′ ← subsumedDelete(PT);2

while PT’ is not emptydo3

PT’ - {pt};4

if ∃Cli ∈ CL′ : pt ≈ tCli then5

Enqueue(pt, Score(pt,Q), Cli);6

UpdateScore(Cli);7

else8

Cli ← CreateCluster(pt);9

Enqueue(pt, Score(pt,Q), Cli);10

CL′ ∪ {Cli};11

CL← OrderClusters(CL′);12

return CL;13

In lines[5 − 7] the algorithm checks if there exists a cluster
Cli matching the path template. Hence we haveO(C). In
lines[8− 11] we haveO(1). In lines[3− 11] the iteration is
computed for each path (i.eT times). As a consequence, the
complexity in lines[3 − 11] is T × O(C) ∈ O(T × C). In
line[12] we obtainO(C × log2C) to order the queue. Finally
O(CLUSTERING) ∈ O(T ×C)+O(C× log2 C). Knowing that
C, T > 1 andT > C thenO(CLUSTERING) ∈ O(T × C).

Referring toBUILDING, we have

lines[4− 6] : O(1).
line[8] : O(T).
lines[12− 15] : O(T)
lines[16− 17] : O(T)
lines[18− 21] : O(1)

In lines[9− 22] we consider the complexity oflines[12−
15] and the maximum complexity between executions in
lines[16−17] andlines[18−21]. Since we haveC iterations,
in lines[9− 22] we haveC × (O(T) + O(T)). Notice that in
lines[12− 15] and lines[16− 17] we iterate all the paths at
most. Hence we haveO(T) andO(T), and, consequently, in
lines[9 − 22] the complexity isO(T) + O(T) ∈ O(T). In
lines[24− 26] we haveO(C) because we just iterate on the
visited cluster list. Since∀Cl : ∃pt ∈ PT ⇒ T ≥ C, final
complexity becomes

O(BUILDING) ∈ N × (O(1) + O(T) + O(T) + O(C))

∈ N ×O(T) ∈ O(N × T)

We can conclude that the overall complexity ofYanii is
O(QUERYSUBMISSION)+O(CLUSTERING)+ O(BUILDING) ∈
O(|Q|) + O(T ×C) + O(N × T) ∈ max{O(T ×C), O(N ×

T)}. Given that most of timesC > N , we result the final
complexity:

O(Yanii) ∈ O(C × T).

IV. COMPARISON

We now compare the results obtained in the previous
section. Recall that:

O(BLINKS) ∈ O(|Q|2 × |G|2)

O(SearchWebDB) ∈ O(|G| ×K2)

O(Yanii) ∈ O(C × T)

Comparison can be performed in two ways: (i) by expressing
relations between the terms of all complexities, or (ii) by a
pairwise comparison. We present both manners.

Comparison with relations: in this case we have to define
somerelationsbetween the different terms used in each study.
In Table 1 we show such relations between the terms we
used in our study and provide the resulting complexities. We
now explain each single relation taking into account that we
combined them in some case.

• T = R × K: it means that we can reach a keyword
matching node from all the roots with different paths.
It is an average/worst case forYanii because we can
have more than one path starting from a given root to a
keyword matching node but even no paths connecting a
root to a keyword matching node.

• T = K: it means that each path contains a different
keyword matching node. It is a good case forYanii
since usually there are more paths sharing the same
keyword.

• C = K: it means that we have a different cluster for each
keyword matching element. In this case we are dependent
on data graph structure even if usuallyC < K.

• K2 = |Q|2, |Q| = K: they mean that we have
one keyword matching element for each keywordqi.
SearchWebDB take advantages againstBLINKS with
these relations since usually|Q| < K.

• T = |G|
K

: it means that all the nodes in the data graph are
involved in a path and one node cannot belong to more
than one path. This is a very extreme case.

Using these relations we produce six different cases, as
shown in Table 1. In particular the cases (5) and (6) result
from the combination of the previous ones. Such cases clearly
show the complexity ranges of each approach. Using an
approximation measured of complexity we can say:

• O(BLINKS) ∈ [O(d3), O(d4)]
• O(SearchWebDB) ∈ [O(d2), O(d3)]
• O(Yanii) ∈ [O(d), O(d2)]

This is a relevant result. All the presented algorithms are
promising representative of an efficient solution for keyword
based search inPTIME class complexity. However we demon-
strated howYanii is more efficient with respect to the others,
presenting a quadratic complexity as upper-bound.

case BLINKS SearchWebDB Yanii
(1). T = R × K O(|Q|2 × |G|2) O(K2 × |G|) O(R × K × C)
(2). T = K O(|Q|2 × |G|2) O(K2 × |G|) O(K × C)
(3). C = K O(|Q|2 × |G|2) O(K2 × |G|) O(T × K)
(4). K2 = |Q|2, T = R × K O(K2 × |G|2) O(K2 × |G|) O(R × K × C)
(5). T = K,C = K, |Q| = K O(|G|2 × K2) O(|G| × K2) O(K2)

(6). T =
|G|
K

, |Q| = K, C = K O(|Q|2 × |G|2) O(|Q|2 × |G|) O(K ×
|G|
K

) = O(|G|)

TABLE I

COMPARISON WITH RELATIONS

Pairwise Comparison: we demonstrate that:

O(BLINKS) > O(SearchWebDB) > O(Yanii)

By comparing the complexity result from previous sections,
for the algorithms we have:
BLINKS vs SearchWebDB:

O(|G| ×K2)

O(|Q|2 × |G|2)
=

O(K ×K)

O(|Q| × |Q| × |G|)

In a very extreme case we have that each node of the graph
matches the query (i.e. all keywords). Therefore:

O(K ×K) ≈ O(|Q| × |Q| × |G|)

From this result, we infer that in a real case:

O(K2)≪ O(|Q|2×|G|) =⇒ O(BLINKS) > O(SearchWebDB)

SearchWebDB vs Yanii:

In this case we consider againS instead of|G| to be more
effective. Therefore we useO(C × T) and O(S × K2). We
separately compareO(T) againstO(S×K) andO(C) against
O(K). First of all we can sayC ≤ K because in the worst case
each matching keyword element corresponds to a path having a
different template (i.e. a different cluster). Furthermore we can
considerO(C) ∈ O(K) that allows to focus the comparison
on O(T) againstO(S ×K). In fact, C < T and K < K ×
S2. In an extreme case we have that for each nodevc of the
summary graph (sg) and for each matching elementvk we
have an informative pathpt such thatpt starts withvc (i.e.
the root of the path) and ends invk (i.e. the last node of
the path), where there doesn’t exist an informative pathpt′,
ending intovk (we denote withlast(pt′)), that subsumespt

(i.e. pt � pt′). In other words

∀vc ∈ sg, ∀vk

∃pt ∈ PT : pt = vc − . . .− vk

and∄pt′ ∈ PT : pt � pt′, last(pt′) = vk

In this case we have

O(T)

O(S ×K)
= 1

Hence, we infer that in a real case:

O(T)≪ O(S ×K) =⇒ O(SearchWebDB) > O(Yanii)

BLINKS vs Yanii:

From the previous resultsO(SearchWebDB) > O(Yanii)
and O(BLINKS) > O(SearchWebDB). Hence we deduce
O(BLINKS) > O(Yanii).

Given the above results, we can make the following call:

O(BLINKS) > O(SearchWebDB) > O(Yanii)

V. CONCLUSION AND FUTURE WORK

We have precisely described the computational complexity
of three representative approaches to keyword based search
over graph structures. We have identified reference measures
that allow comparison of computational complexity. Our re-
sults show thatYanii shows the lowest computational cost
among the approaches considered, which is an indication
of the potentiality behind the intuition inYanii. A lower
complexity means that the approach is less susceptible to
variations of the keyword search setting. From a theoretical
point of view, future directions focus on improving the search
algorithm ofYanii to reach a linear time complexity.

REFERENCES

[1] S. Agrawal, S. Chaudhuri, G. Das. DBXplorer: enabling keyword
search over relational databases. InInt. Conf. on Management of Data
(SIGMOD’02), pp. 627, Wisconsin, USA, 2002.

[2] G. Bhalotia, Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.
Keyword Searching and Browsing in Databases using BANKS. InInt.
Conf. on Data Engineering (ICDE’02), pp. 431-440, CA, USA, 2002.

[3] S. Cohen, J. Mamou, Kanza, Y., Sagiv, Y. XSEarch: A Semantic Search
Engine for XML. In Int. Conf. on Very Large DataBase (VLDB’03), pp.
45-56, Germany, 2003.

[4] R. De Virgilio, P. Cappellari, M. Miscione. Cluster-based exploration
for Effective Keyword Search over Semantic Datasets. InInt. Conf. on
Conceptual Modeling (ER’09), pp. 205-218, Brazil, 2009.

[5] L. Guo, Shao, F., Botev, C., Shanmugasundaram, J. XRANK:Ranked
Keyword Search over XML Documents. InInt. Conf. on Management
of Data (SIGMOD’03), pp. 16-27, USA, 2003.

[6] H. He, H. Wang, J. Yang, P.S. Yu. BLINKS: ranked keyword searches
on graphs.. InInt. Conf. on Management of Data (SIGMOD’07), pp.
305-316, China, 2007.

[7] V. Hristidis, Papakonstantinou, Y. DISCOVER: Keyword Search in
Relational Databases. InInt. Conf. on Very Large DataBase (VLDB’02),
pp. 670-681, China, 2002.

[8] Kaushik, R., Krishnamurthy, R., Naughton, J.F., Ramakrishnan, R. On
the integration of structure indexes and inverted lists. InInt. Conf. on
Management of Data (SIGMOD’04), pp. 779-790, France, 2004.

[9] T. Tran, H. Wang, S. Rudolph, P. Cimiano. Top-k Exploration of Query
Candidates for Efficient Keyword Search on Graph-Shaped (RDF) Data.
In Int. Conf. on Data Engineering (ICDE’09), pp. 405-416, China, 2009.

