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Abstract

Most of the recent approaches to keyword search employ graph structured represen-
tation of data. Answers to queries are generally sub-structures of the graph, containing
one or more keywords. While finding the nodes matching keywords is relatively easy,
determining the connections between such nodes is a complex problem requiring on-
the-fly time consuming graph exploration. Current techniques suffer from poorly per-
forming worst case scenario or from indexing schemes that provide little support to the
discovery of connections between nodes.

In this paper, we present an indexing scheme for RDF that exposes the structural
characteristics of the graph, its paths and the information on the reachability of nodes.
This knowledge is exploited to expedite the retrieval of the sub-structures representing
the query results. In addition, the index is organized to facilitate maintenance operations
as the dataset evolves. Experimental results demonstrates the feasibility of our index that
significantly improves the query execution performance.

1 Introduction

In 2006, the Linked Open Data initiative (http://linkeddata.org/) inspired practitioners,
organizations and universities to either publish or build from scratch RDF (Resource
Description Framework, a graph-oriented logical data model) datasets from data that
had previously been stored using traditional models [1], contributing to the definition of
what is today called the Web of Data. The main objectives in searching this web of data
are: the location and retrieval of results that are most relevant to the user’s search, and to
give more relevance to valid results currently missed (or low ranked) by modern search
engines. The methodology for achieving these aims is to include as much semantics as
possible in datasets and in general, RDF has been used to provide indexes with rich
semantics to better interpret user queries.

In a scenario where the online data is constantly increasing, the difficulty for users is
locating and retrieving the data that accurately meet their requirements. Having to know
how data is organized and the query language to access data represent an obstacle to
information access to non expert users. For this reason, keywords search systems are in-
creasingly popular. Many approaches (e.g. [4, 8, 10, 12, 14, 15]) implement information



retrieval (IR) strategies on top of traditional database systems, with the goal of eliminat-
ing the need for users to understand query languages or be aware the data organization.
A general approach involves the construction of a graph-based representation where
query processing addresses the problems of an exhaustive search over the RDF graph.
Two main steps are involved in the approach. Firstly, the system retrieves those parts
of the graph that match users keywords with a subsequent identification of any connec-
tions across graph segments returned by the query process. Secondly, the system ranks
the combined graph segments and top-k results are presented from the candidate result
set. Clearly, the graph search is a crucial step. Typically it is supported by indexing sys-
tems (computed off-line) to guarantee the efficiency of the search. Existing systems [9,
13, 18] focus mainly on indexing nodes information (e.g. labels, position into the graph,
cardinality and so on) to achieve scalability and to optimize space consumption. While
locating nodes matching the keywords is relatively efficient using these indexes, deter-
mining the connections between graph segments is a complex and time-consuming task
that must be solved on-the-fly at query processing time. To provide results in a reason-
able time, current approaches do not perform an exhaustive search. As index schemes
do not adequately support the discovery of connections between nodes, heuristics must
be introduced to assist the search in locating a more complete result set. Thus, while the
introduction of RDF-based solutions offers simple user interfaces with genuine seman-
tic search features, the problem now lies with how to associate or connect intermediate
result sets and how to manage the cost of determining those associations.

Contribution. We present a novel indexing scheme for RDF datasets that captures
associations across RDF paths before query processing and thus, provides both an ex-
haustive semantic search and superior performance times. Unlike other approaches in-
volving implementation based solutions, we follow a process that starts with the def-
inition of the index at a conceptual level. It comprises paths and information on the
reachability of nodes within the RDF graph. The next step is a logical translation for a
relational database. Eventually, at the physical level, we choose optimization techniques
based on physical indexing and partitioning. Because of the storage model foundations,
the system can easily represent structural aspects of an RDF graph. Moreover we pro-
vide a set of procedures to insert or delete nodes (resources) and edges (properties)
into the index and thus, support updates to the RDF graph. Such index is deployed
in YAANII [5], a novel keyword search framework that leverages a joint use of scoring
functions and solution building algorithms to get the best results for the initial result set.
Experiments demonstrate how the proposed indexing scheme allows to significantly im-
prove the efficiency of the overall process. The paper is organized as follows: Section 2
discusses related work; Section 3 introduces the basic concepts and illustrates how we
model our path-oriented index; based on this model, Section 4 describes how the index
is built and maintained in an efficient manner; finally Section 5 provides experimental
evaluations and in Section 6, conclusions and future work are presented.

2 Related Work

Several proposals [9, 13, 18] implement in-memory structures that focus on node index-
ing. Others [16, 19] focus on indices for SPARQL query execution and join efficiency,
not offering concrete support to graph exploration for keyword search. In [9], authors



provide a Bi-Level INdexing Keyword Search (BLINKS) method for the data graph. This
approach assumes keywords can only occur in nodes, not in edges, and is based on pre-
computed distances between nodes. The system implements two indices: one index
stores information on which nodes are reachable from a given node; the other index is a
hash table storing the shortest distance between pairs of nodes. In [13], authors propose
a linked-list indexing scheme for RDF. The index is composed of a dictionary table,
a statement table and a resource table. The dictionary table maintains the association
between each resource and its (generated) identifier. Primarily, this table acts as reverse
look-up identifier to resource label, to complete the answer to a query. The statement
table maintains the list of the 〈s, p, o〉 RDF statements, where each statement has three
references, each pointing to the next statement using the same s, p, o respectively. The
resource table contains information about all the resources (s and o), linking each one
to the first statement in which it occurs, and collecting statistics about statements pre-
senting such resources. In [18], authors propose an approach to keyword search in RDF
graph through query computation, implementing a system called SEARCHWEBDB. It
is supported by two index structures: a keyword-to-element index and a graph index.
The former implements an inverted index to associate each possible keyword to nodes or
edges in the graph. To capture semantically similar words such as synonyms, every term
is expanded with its similar term as described in WordNet [6]. The latter stores schema
information of the graph, that is classes and relations between classes. The authors refer
to this type of schema as a summary graph. Contrary to those approaches that index the
entire graph, SEARCHWEBDB derives the query structure by enriching the summary
graph with the input keywords. The search and retrieval process for the enriched sum-
mary graph, with all its possible distinct paths beginning from some keyword elements,
provides a set of queries that once calculated, provides the final sub-graph answers.
Other proposals focus on indexing graph substructures (e.g. paths, frequent subgraphs,
trees). Typically, these indexes are exploited in approaches dealing with graph matching
problems, often to filter out graphs that do not match an input query. Approaches in this
area can be classified in: graph indexing and subgraph indexing. In graph indexing ap-
proaches, e.g. gIndex [20], TreePi [21], FG-Index [3], the graph database consists of a
set of small graphs. The indexing aims at finding all database graphs that contain or are
contained by a given query graph. On the other hand, subgraph indexing approaches,
e.g. GraphGrep [7], TALE [17], GADDI [22], aims at indexing large database graph,
with the goal of finding all (or a subset of) the subgraphs that match a given query
efficiently. Our indexing scheme provides an agile solution with respect to graph sub-
structures indexing approaches and enriches traditional node/edges indexing proposals
with exhaustive information about connections between nodes.

3 Index Modeling

Our goal is to model a generic indexing scheme to support queries execution and key-
word based search engines. Generally, standard queries are composed of a set of, pos-
sibly, interrelated path expressions. The result to a standard query is the portion of the
graph that matches the path-expression(s) provided in the query specification. In the
keyword based search paradigm, users are assumed to be agnostic of the schema and
the query is a list of keyword terms. In keyword search systems the focus is on discov-



Fig. 1. An example of reference

ering connections between nodes matching keywords, on top of which query answers
are built (as subgraphs). We would support systems that perform standard queries, such
as path expressions, as well as keyword search, where the emphasis is on discovering
connections between those parts of the graph holding information relevant to the input
keywords. In particular, we focus on semantic dataset expressed in RDF format, that is
a model that describes a directed labeled graph, where nodes are resources (identified
by URIs) and edges have a label that expresses the type of connection between nodes.

Definition 1 A labeled directed graph G is a three element tuple G = {V, L, E} where
V is a set of nodes, L is a set of labels and E is a set of edges of the form e(v, u) where
v, u ∈ V and e ∈ L.

In G we call sources the nodes vsrc with no incoming edges (i.e. @e(u, vsrc) ∈ E),
and sinks the nodes vsink with no outgoing edges (i.e. @e(vsink, u) ∈ E). We call
intermediate node, a node that is neither a source nor a sink. Consider the example in
Fig. 1. It illustrates an ontology about Publications written by Researchers (i.e. authors)
accepted and published into a Conference. We have two sources, pub1 and pub2, and
four sinks, of which for instance we have Publication and Conference.

From the data graph point of view, in a RDF graph we have classes and data val-
ues (i.e. sinks), URIs (i.e. intermediate nodes and sources) and edges. Since it can be
assumed the user will enter keywords corresponding to attribute values such as a name
rather than using a verbose URI (e.g. see [18]), keywords might refer principally to
edges and sinks of the graph. Therefore in our framework we are interested to index
each path starting from a source and ending into a sink. Moreover, any node can be
reached by at least one path originating from one of the sources. Paths originating from
sources and reaching sinks includes (sub-)paths that stop in intermediary nodes. In case
a source node is not present, a fictitious one can be added. To this aim, the so-called
Full-Path is a path originating in a source and ending in a sink.

Definition 2 (Full-Path) Given a graph G = {V,L, E}, a full-path is a sequence
pt =v1-e1-v2-e2- . . . − en−1-vf where vi ∈ V , ei ∈ L (i.e. ei(vi, vi+1) ∈ E), v1

is a source and the final node vf is a sink. We refer to vi and ei as tokens in pt.



Fig. 2. Conceptual modeling of the index

In Fig. 1 a full-path ptk is pub1-author-aut1-type-Researcher. The length
of a path corresponds to the number of its nodes; the position of a node corresponds to
its position in the presentation order of all nodes. In the example, ptk has length 3 and
the node aut1 is in position 2. In the rest of the paper we refer to paths as full-paths.

The sequence of edge labels (i.e. ei) describes the structure of a path. In some sense,
the sequence of ei is a schema for the information instantiated in the nodes. We can say
that paths sharing the same structure carry homogeneous information. More properly,
we say that the sequence of ei in a path represents its template. Given a path pt its
template tpt is the path itself where each node vi in pt is replaced with the wild card #.
In our example ptk has the following template: #-author-#-type-#. Several paths
can share the same structure: it allows us to cluster paths according to the template
they share. For instance the path ptj pub2-author-aut2-type-Researcher has
the same template of ptk, that is ptj and ptk are in the same cluster.

In our framework we follow a three levels modeling. Starting from conceptual level,
Fig. 2 shows an ER-diagram modeling the major constructs in our index. We start from
the entity NODES modeling a node in the graph. The label is characterized by the at-
tribute URI and each node is identified by NID. We then have the main entity PATHS
representing a full-path. In particular, each path is identified by PID, presents the length,
and the relation final node with NODES, representing the sink of the path. Each node
belongs to a path with a position (i.e. the relation pathnode). Finally we have the entity
TEMPLATES identified by TID, presenting the sequence of edge labels (i.e. the attribute
template) and the number of paths sharing the template (i.e. the attribute count). Be-
tween PATHS and TEMPLATES a one-to-many relation assigns a template to each path.

At logical level, we have a straightforward transformation to a relational model.
Fig. 3 shows the logical modeling of Fig. 2, populated with data from the example in
Fig. 1. Each entity is transformed into a relation with the corresponding primary key
and with foreign keys for the one-to-many relationship it contains. The many-to-many
relationship PATHNODES is also transformed to a relation, correlating paths with their
nodes, and vice versa, through the attribute position.

As RDF datasets are often very large, at physical level we exploit relational DBMS
features to tune our schema for better performance. In particular we employ Oracle as
relational DBMS. First of all we implement horizontal partitioning on the tables, based
on the value of a column (called range). In particular PATHS is partitioned with respect to
the template (i.e. TID). In this way each partition is a cluster of homogeneous full-paths.



Fig. 3. Logical Modeling of the index

Then we define physical indexes on the single partitions and on the other unpartitioned
tables. Specifically, we employ the Oracle Index-organized tables (IOTs), that are a
special style of table structure stored in a B-tree index frame. Along with primary key
values, in the IOTs we also store the non-key column values. IOTs provide faster access
to table rows by the primary key or any key that is a valid prefix of the primary key.
Because the non-key columns of a row are present in the B-tree leaf block itself, there
is no additional block access for index blocks. In our case PATHS and PATHNODES
are organized as IOTs. The matching is supported by standard IR engines (c.f. Lucene
Domain index (LDi)1 ) embedded into Oracle as a type of index. In particular we define
a LDi index on the attributes label and template of tables NODES and TEMPLATES
respectively. Further, semantically similar entries such as synonyms, hyponyms and
hypernyms are extracted from WordNet [6], supported by LDi.

With this broad goal in mind, our indexing system provides two major advantages:
(i) intersections between paths, needed to build the subgraph solutions, are efficiently
identifiable (as we will show in the next section), and (ii) the template based classifica-
tion splits the information from the graph into non-overlapping subsets, as each cluster
represents an instance of a different template (or schema).

4 Index Management

In this section, we describe the index creation, discuss the processes to maintain the the
index when the graph changes and, finally, illustrate how to query the index.

4.1 Constructing the Graph Index

Given a graph, the creation of the index requires three steps: (i) node hashing, (ii) source
identification, and (iii) computation of full-paths, from source to sink.
1 http://www.scribd.com/doc/38406372/Lucene-Domain-Index



Algorithm 1: BFS-based graph exploration algorithm
Input : Sets triples and Roots
Output: PATHS, PATHNODES and TEMPLATES populated

1 foreach r ∈ Roots do
2 Queue ← ∅ ;
3 ptr ← NewID();
4 PATHS ← PATHS ∪ 〈ptr ,NewID(), 1, r 〉 ;
5 PATHNODES ← PATHNODES ∪ 〈ptr , r , 1〉;
6 Enqueue(Queue , ptr );
7 while Queue is not empty do
8 Dequeue (Queue,pt) ;
9 if ∃〈pt , τ , l , n 〉 ∈ PATHS then

10 foreach 〈n , p , o 〉 ∈ triples do
11 if 6 ∃〈pt′ , , , o 〉 ∈ PATHS then
12 pt′ ← NewID() ;
13 τ ′ ← NewTemplate(τ , p );
14 PATHS ← PATHS ∪ 〈pt′ , τ , l + 1, o 〉 ;
15 foreach 〈m , pt , pos 〉 ∈ PATHNODES do
16 PATHNODES ← PATHNODES ∪ 〈m , pt′ , pos 〉 ;

17 PATHNODES ← PATHNODES ∪ 〈o , pt′ , l + 1〉 ;
18 Enqueue(Queue, pt′ ) ;

The input dataset is assumed to be an RDF graph where the information is modeled
as a set of triples. Each triple has the form 〈s, p, o〉 , where: s is the origin resource
(known as subject), o is the target resource (object), p is a property linking the origin
with the target resource (known as property). In the first step, we populate columns URI
and NID ub table NODES with nodes URIs and IDs, respectively. In the second step,
we identify the source nodes, that is all subjects of triples that never occur as objects.
Finally in a third step, we explore the graph to build the full-paths: once identified, the
path is decompose to populate tables TEMPLATES, PATHS and PATHNODES. We explore
the graph using a concurrent version of the Breath-First Search (BFS) algorithm, shown
in Algorithm 1. Starting from each source (line 1), the algorithm creates a one node
length path ptr composed of the source node only, associates the path with an ID using
the function newID, and puts ptr in the Queue (lines 3-6). While there are elements
in the queue (line 7), the algorithm dequeue pt from Queue (line 8): pt represents the
path just indexed and ending into the node n. Starting from n the algorithm collects all
nodes o, object into triples 〈n, p, o〉 (line 10). If a path ending in o does not exist (line
11), then new paths pt′ extending pt with the edge 〈n, p, o〉 (lines 13-17) are created.
Finally, it enqueues pt′, that will possibly create new paths of length l + 2.

4.2 Index Maintenance

When the dataset changes, the index must be updated as a consequence. We developed a
number of basic maintenance operations: insertion/deletion of a node; insertion/deletion



of an edge; and update of the content of a node/edge label. More sophisticated opera-
tions, such as the insertion or removal of a triple or a set of triples, can be implemented
as a composition of these basic functions.

Before presenting the algorithms for these basic operations, it is useful to introduce
a new concept and a new routine that simplify the discussion of the maintenance op-
erations: the tailpath and the forward-concatenation . A tailpath is a sub-path of an
full-path. Specifically, it is the sub-path starting at an intermediate position and ending
with the final node of the full-path (i.e. a sink).

Definition 3 (TailPath) A tailpath is represented as a pair 〈nodes, sub-template〉where
nodes is a list of pairs 〈n, pos〉, n is a node belonging to the tailpath and pos its posi-
tion. As an extension, sub-template is the corresponding template of tailpath.

Tailpaths are not stored in the index, but computed dynamically if and when needed for
maintenance operations.

Definition 4 (Forward-Concatenation) The forward-concatenation function creates
new paths by merging a selected path with a tailpath.

The forward-concatenation function uses a new edge, connecting the last node of the
selected path, with the first node of the tailpath to form a new Full-Path.

Algorithm 2 illustrates how to compute a tailpath starting from a node at a specific
position in a given path pt. The tailpath is built by querying the information from tables

Algorithm 2: TailPath.
Input : A Path pt, an integer pos
Output: A Tail Path tailPath

1 set← ∅ ;
2 foreach 〈pt , nr , pos

′〉 ∈ PATHNODES : pos ′ ≥ pos do
3 set ← set ∪ 〈nr , pos

′ − pos + 1〉 ;

4 τsub ← SubTemplate(pt, pos );
5 tailPath ← 〈set , τsub 〉;
6 return tailPath;

PATHNODES (lines 2-3) and TEMPLATES (line 4) from our index. To compute the sub-
template we rely on a simple function, sub-template that retrieves the template for a
path and returns its substring starting at the specified position (where the position is de-
termined by the # symbols in the template). As an example, refer to Fig. 1 and its index
in Fig. 3, with the tailpath for path with ID 23 (i.e. pub-acceptedBy-conf1-type-
Conference) starting at position 2 (i.e. node conf1) is conf1-type-Conference.

Algorithm 3 describes the forward-concatenation mechanism to append a set of
tailpaths tailPaths to an existing path pt, where an edge p connecting the last node
of the path with the first node of the tailpath is provided. In the algorithm, for each
tailpath (line 1) a new path ptnew is created (lines 2-4). The function JoinTemplates



Algorithm 3: ForwardConcatenation.
Input : A set tailPaths of tailpaths, a path pt to extend, an edge p
Output: The tables PATHS, PATHNODES, and TEMPLATES updated.

1 foreach 〈pairs , τsub 〉 ∈ tailPaths do
2 ptnew ← NewID();
3 τnew ← JoinTemplates(τ , τsub );
4 〈nmax , posmax 〉 ← MaxPos(pairs ) ;
5 PATHS ← PATHS ∪ 〈ptnew , τnew , nf + posmax , nmax 〉;
6 foreach 〈pt , n , pos 〉 ∈ PATHNODES do
7 PATHNODES ← PATHNODES ∪ 〈ptnew , n , pos 〉;
8 foreach 〈m , pos 〉 ∈ pairs do
9 PATHNODES ← PATHNODES ∪ 〈ptnew ,m , pos + l 〉;

concatenates two templates, updates the table TEMPLATES with the newly created tem-
plate, and returns the identifier of such template. When updating TEMPLATES, if the
template is already defined then no row is added to the table; the count value for the
existing template is incremented and its identifier returned. Otherwise, a new row for
the new template is inserted in the table. The function MaxPos is used to retrieve the
pair 〈n, pos〉 with highest position value from the set of nodes belonging to the tailpath.
With this information defined, we can store the new path in PATHS (line 5).

Let us provide an example. Assume pt =pub1-acceptedBy-conf1, tailPaths as
{DEXA} and p as name. The new path is ptnew = pub1-acceptedBy-conf1-name-

DEXA, with template #-acceptedBy-#-name-#. To complete the definition, we must
associate the newly created path with its nodes. Nodes belonging to ptnew are: those
belonging to pt (lines 6-7), and those belonging to the tailpath (lines 8-9).

Edge deletion. The edge to be deleted is specified as a parameter to the Algorithm 4
in the form of an RDF triple 〈s, p, o〉 . This operation requires deleting all paths that

Algorithm 4: Delete an edge.
Input : A triple〈s , p , o 〉 representing the edge with label p between nodes s and o.
Output: The updated index.

1 foreach 〈pt , n o, pos 〉 ∈ PATHNODES do
2 foreach 〈pt , n s, pos − 1〉 ∈ PATHNODES do
3 if p = PropByPos(pt, pos-1) then
4 TailPaths ← TailPaths ∪ TailPath(pt, pos );
5 PATHS ← PATHS r 〈pt , , , 〉;
6 PATHNODES ← PATHNODES r 〈pt , , 〉;
7 DelTemplate(pt);

8 if 6 ∃〈pt , n o, 〉 ∈ pathnodes then
9 ForwardConcatenation(TailPaths, ∅, ∅);



contain edge p. In our index, edges are not stored explicitly: they are encoded in the
templates associated with the paths. In order to identify the paths containing p, we
select those pt in which ns, no (i.e. IDs associated to nodes s and o respectively) are
directly connected (lines 1-2). Then, for each pt we verify if the edge between ns and
no is p. To this aim, we use the function PropByPos that takes as input pt and the
position (pos− 1) of ns (i.e. no is in position pos) and returns the edge outgoing from
s (i.e. by accessing the template corresponding to pt).

Let us now give an example using the graph depicted in Fig. 1. Assume we want
to remove property acceptedBy between pub1 and conf1 (i.e. corresponding to the
triple 〈pub1, acceptedBy, conf1〉). The IDs of the paths having nodes pub1 immedi-
ately preceding conf1 are 22, 23 and 24 (see Fig. 3). Consider the path with ID 24;
conf1 occurring at position 2. Thus, PropByPos (i.e. PropByPos(24, 1)) will ac-
cess the template with ID 15 (i.e. #-acceptedBy-#-name-#) and return the sub-string
acceptedBy between nodes in positions 1 and 2. Similarly we process also paths with
IDs 22 and 23. Continuing the discussion of the algorithm, since no could become a
source, we need to build the tailpaths from no (line 4) before deleting all pt. Thus we
delete all pt and all corresponding nodes (lines 5-6). We must also update the corre-
sponding count in TEMPLATES by using the function DelTemplate. If no became a
source (line 8), we then invoke the forward-concatenation on the tailpaths (line 9) to
build all paths from no.

Edge insertion. The input to Algorithm 5 is a triple 〈s, p, o〉 where p is the label for
the new edge to add between (existing) resources s and o. We have to create the new

Algorithm 5: Insert a new edge
Input : A triple〈s , p , o 〉 representing the edge with label p between nodes s and o.
Output: The updated index.

1 TailPaths ← ∅ ;
2 foreach 〈pt1 , n o, pos 〉 ∈ PATHNODES do
3 TailPaths ← TailPaths ∪ TailPath(pt1, pos );

4 foreach 〈pt1 , τ , l , n s〉 ∈ PATHS do
5 if 6 ∃〈pt1 , n o, 〉 ∈ PATHNODES then
6 ForwardConcatenation(TailPaths, pt1, p);

7 foreach 〈pt1 , no, 1〉 ∈ PATHNODES do
8 PATHS ← PATHS r 〈pt1 , , , 〉;
9 PATHNODES ← PATHNODES r 〈pt1 , , 〉;

10 DelTemplate(pt1);

paths involving p. To this aim we have to concatenate paths ending in s (i.e. node ns)
and tailpaths built from o (i.e. node no) as shown in (lines 2-6).

For instance, suppose we want to re-introduce the property acceptedBy we have
removed in the previous example. The input triple is 〈pub1, acceptedBy, conf1〉. Only
the path pt with ID 31 ends in pub1. The tailpaths from node conf1 are: (1) sub-



path conf1 with sub-template #, (2) sub-path conf1-type-Conference with sub-
template #-type-#, and (3) conf1-name-DEXA with sub-template #-name-#. Con-
necting pt with such tailpaths through property acceptedBy, we obtain back paths with
IDs 22, 23, 24. If no becomes a source, we delete all paths rooted in no (lines 7-10).

Remaining maintenance operations. The rest of the maintenance operations are sim-
pler and intuitive, and are now discussed briefly. In Node insertion, we basically have to
insert a new entry into NODES. Since it is not yet linked to other nodes, the new node is
a source with an associated path (of length 1). Therefore, we must insert a path updating
PATHS, PATHNODES and possibly, TEMPLATES. Node deletion is the inverse operation
to node insertion. Assuming the node is not linked to any other, we have to delete one
entry from tables: NODES, PATHS, PATHNODES and possibly, from TEMPLATES if the
count in TEMPLATES reaches zero for the associated template. Edge update requires
as input, the triple to identify which edge to update and a new value for such edge.
Since edge information is encoded in templates, we must access and parse the template
strings. Therefore, we retrieve the paths containing the input triple and we generate a
new template for them with where the old value is replaced by the new one. In Node
update, once identified the node, we only have to update its URI in table NODES.

Computational Complexity. In this section we present a discussion about the com-
putational complexity of the creation and maintenance of our indexing scheme. Before
commencing the discussion, let us introduce the notation we will use in the remainder
of this section. Let R be the number of sources, E be the number of edges and V the
number of vertexes. We indicate with PT the number of paths in the index. With PTn

we denote the number of paths containing a specific node n, and with PTn1,n2,...,nk
the

number of paths containing the node sequence n1, n2, . . . , nk. Finally, TP indicates
the number of tailpaths in the forward concatenation and L the length of a path.

The Index Creation is O(R × (E + V )). Such algorithm is an implementation of
BFS (i.e. notoriously it has complexity O(E + V )) and it is invoked once for each
source. Let us remark that our approach, initially, does not compute all the possible
paths between a source and a node (leaf or intermediate), but only that ones ending into
a sink: thus the complexity for the BFS is much lower than O(E + V ). Index update
operations on a single node (e.g. insertion, deletion or update of a node), are trivial and
it is straightforward to verify that they have complexity O(1). The function Forward-
Concatenation defined in Algorithm 3 is O(TP ×L). In fact, it depends on how many
tail paths (TP ) we have to concatenate in the creation of the new path; and the creation
of a new path depends on its length (L). In practical cases (also attested by experiments)
L is rather smaller than TP . Therefore we can reformulate in O(TP ). The Algorithm 4
to delete an existing edge p connecting nodes s, n is O(PTs,o × L). Deleting the path
having the edge of interest implies to delete the occurring nodes (i.e. L). Since the
paths containing the triple 〈s, p, o〉 are PTs,o, deleting this information for all such
paths spends O(PTs,o × L). In case the node o becomes a source, then we also have
the ForwardConcatenation on the tailpaths from o. Although this operation is merely
a copy, its complexity is still O(PTs,o × L). Summarizing, the overall complexity is
2×(PTs,o×L) ∈ O(PTs,o×L). Since L is rather small, we have O(PTs,o). The update
of an edge in a path has complexity O(PTs,o). We assume the function ReplaceEdge



Q1 :
SELECT DISTINCT pn . PID
FROM PATHS AS pn
WHERE pn . F NID in (

SELECT NID
FROM NODES AS n
WHERE l c o n t a i n s ( URI ,

<inputTerm >) )

Q2 :
SELECT pn . PID ,

pn . p o s i t i o n
FROM PATHNODES AS pn
WHERE pn . NID =

<inputNodeID>

Q3 :
SELECT pn1 . PID
FROM PATHNODES AS pn1
WHERE pn1 . NID in (

SELECT pn2 . NID
FROM PATHNODES AS pn2
WHERE pn2 . PID =

<i n p u t P a t h I D> )

Fig. 4. Sample queries on the index

to have complexity O(1). Because the edge could belongs to many paths, ReplaceEdge
must be performed more times. Since the number of paths with such edge is PTs,o, thus
the complexity is O(PTs,o). Algorithm 5 defines the insertion of a new edge p between
two existing nodes s, o. The algorithm first takes the PTo tailpaths from o: we have
O(PTo × L). Then it performs a forward-concatenation of the above tailpaths with all
the paths ending in s (i.e. in the worst case PTs paths). Thus the forward concatenation
(i.e. O(PTo×L)) must be performed for each path ending in s; we conclude the overall
complexity is O(PTs ×PTo ×L). As we noticed before, in practical cases, L is rather
small, which leads us to say that the complexity of the operation is O(PTs × PTo). In
an extreme case we could have PTo + PTs = PT ; in this situation most of the paths
ends in o and/or s. Therefore O(PTo) or O(PTs) ∈ O(PT ). In practical cases it is rare
that the two nodes s, o concentrate all the paths, then O(PTo) or O(PTs)� O(PT ).

4.3 Index Querying

In this section, we provide a few examples, shown in Fig. 4, on how to query our in-
dex. Query Q1 retrieves all paths having at least one node matching the input keyword
inputTerm. This query uses the function lcontains, part of the Oracle SQL syntax, that
exploits the Lucene full-text search capability. Although we use Oracle, as described in
Section 5, this query can easily be adjusted to suit other SQL dialects. In fact, many
modern DBMS supports Lucene by implementing their own variation on the SQL syn-
tax. The query limits its attention to the final node (F NID) of the paths because key-
words only occurs in final nodes, as intermediary nodes only contain URI references.
In a variation, Q1 can be join with TEMPLATES to perform keyword search on paths’
template, i.e. searching for keywords on the edges. The second query, Q2, retrieves all
paths containing a generic node inputNodeID along with its position in each path. The
node can be any between a source, intermediary or sink. This information can be ex-
ploited when the position of a node is a critical information to perform further analysis,
like: reachability of such node from other nodes, the computation of the paths starting
from or ending in such node. Last query, Q3, retrieves all the paths intersecting with a
given path inputPathID. It first locates the nodes belonging to inputPathID, then
the paths sharing such nodes. In keyword search systems, this query is useful when
searching for connections (on the graph) between the nodes (or edges) matching some
keyword. A keyword search system builds a solution (i.e. a subgraph) assembling inter-
secting paths with nodes (or edges) matching some keyword.



(a) (b)

Fig. 5. Maintenance Scalability with respect to #nodes (a) and #edges (b)

5 Implementation

We implemented our path-oriented index into YAANII [5], a Java system for keyword
search query over RDF datasets. All procedures for building and maintenance of our in-
dex have been serialized in PL/SQL operations and deployed in Oracle 11g v2. With the
experiments discussed in this section we have measured how much the index improves
query performance in YAANII. We used a widely-accepted benchmark of ten queries on
DBLP for keyword search evaluation. DBLP (Digital Bibliography & Library Project,
a computer science bibliography) is a dataset containing 27M triples about computer
science publications. Due to space limitations we omit the query list here (see [11]).
Experiments were conducted on a dual quad core 2.66GHz Intel Xeon, running Linux
RedHat, with 8 GB of memory, 6 MB cache, and a 2-disk 1Tbyte striped RAID array.
We evaluated the performance of: index building, index update and query execution.
On top of DBLP we indexed roughly 17M of entries into the table PATHS, 28M into
PATHNODES, 0,6M into TEMPLATES and 6M into NODES. The building task took a to-
tal 37 hours, and includes: the import of dataset from a single file encoding DBLP in
NTRIPLE, and the execution of the BSF algorithm to compute the fullpaths. The final
disk space required by the storage of the index was 718MB.

Fig. 5 collects the performance of maintenance operations (i.e. insertion, deletion
and update of nodes and edges). The figure reports the scalability of such operations
with respect to the increasing number of nodes (i.e. Fig. 5.(a)) and edges (i.e. Fig. 5.(b)).
At each group of nodes (e.g. 1, 2, . . . , 6 millions) or edges (e.g. 4, 8, . . . , 27 millions),
we inserted and updated 100 nodes (edges) and then we deleted them. Then we mea-
sured the average response time (ms) for one node (or edge). Opposite to the building
step, the maintenance of the index follows good performance, satisfying practical sce-
narios with frequent updates of the dataset.

For query execution evaluation, we integrated our index in YAANII and we com-
pared performance with the most related approaches: SEARCHWEBDB [18], bidirec-
tional search [11] (we refer to it as BIDIRECT) and the several techniques based on
graph indexing, i.e. 1000 BFS, 1000 METIS, 300 BFS, 300 METIS (see details in [11]).
We ran the queries in [11] ten times and measured the average response time. Precisely,
the total time of each query is the time for computing the top-10 answers. The query run-
times are shown in Figure 6. In general BIDIRECT performs poorly, SEARCHWEBDB
is comparable with BFS and better than METIS. YAANII with our index implemented is



Fig. 6. Response Times

the best (on average) among the cited approaches: it was consistently the best for most
of the queries; it outperforms all competitors by a large margin, improving times by
nearly a factor varying from 3 to 188 in the geometric mean. As demonstrated in [2],
the complexity of YAANII algorithm outperforms other approaches, but by employing
our index the entire process, requiring frequent queries similar to Q1, Q2 and Q3 dis-
cussed in Section 4.3, speed-up significantly.

6 Conclusion and Future Work

The web of data is a powerful mechanism for both users and organisations but due to
its size (and the size of many individual information components) provides a signif-
icant challenge when searching for information needs. In this paper, we presented a
path-oriented indexing scheme for the large graph structures that contain the semantic
datasets comprising the web of data. The key feature of the index is that it exposes the
structural characteristics of the graph: its paths, the structure (schema) of these paths,
and the information on the reachability of nodes. By exploiting this information, we can
expedite query execution, especially for keyword based query systems, where query re-
sults are built on the basis of connections between nodes matching keywords. As graph
exploration is a complex and time consuming task, usually computed on-the-fly during
query processing, our index facilitates a far more efficient query process. We devel-
oped a prototype system by integrating our index into YAANII, a system for keyword
searching query RDF using path computations. Results show that the index significantly
increases the performance of YAANII, outperforming other approaches while still pro-
viding the desired, exhaustive search. Current research is focused on: an investigation
into mathematical properties to weight relevant paths and templates with respect to the
graph; a more compact index and compression technique to reduce space consumption;
and further optimizations for both index creation and maintenance.
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