A Similarity Measure for Approximate Querying
over RDF data

Roberto De Virgilio
Universita Roma Tre
Rome, ltaly
dvrQdia.uniromad3.it

ABSTRACT

Approximate query answering relies on a similarity measure
that evaluates the relevance, for a given query, of a set of
data extracted from the underlying database. In the context
of graph-modeled data, many methods (such as, subgraph
isomorphism, graph edit distance, and maximum common
subgraph) have been proposed to face this problem. Unfor-
tunately, they are usually hard to compute and when they
are used on RDF data, several drawbacks arise. In this
paper, we propose a measure to evaluate the similarity be-
tween a (small) graph representing a query and a portion
of a (large) graph representing an RDF data set. We show
that this measure: (i) can be evaluated in linear time with
respect to the size of the given graphs and, (ii) guarantees
other interesting properties. In order to show the feasibil-
ity of our approach, we have used such similarity measure
in a technique for approximate query answering. The tech-
nique has been implemented in a prototypical system and
a number of experimental results obtained with this system
confirm the effectiveness of the proposed measure.

Categories and Subject Descriptors

H.2.4 [Systems|: Query Processing; H.3.3 [Information
Search and Retrieval]: Search process

General Terms

Algorithms, Performance

Keywords
Top-k, Graph Matching, Monotonicity, RDF

1. INTRODUCTION

The Semantic Web technology and the Linked Open Data
initiative are fostering the generation and availability of a
large quantity of RDF data. This phenomenon is turning the
Web into a global knowledge base, where resources are iden-
tified by means of URIs, semantically described by RDF, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EDBT/ICDT ’13, March 18 - 22, 2013, Genoa, Italy.

Copyright 2013 ACM 978-1-4503-1599-9/13/03 ...$15.00.

Antonio Maccioni
Universita Roma Tre
Rome, Italy
maccioni@dia.uniromad.it

Riccardo Torlone
Universita Roma Tre
Rome, Italy
torlone@dia.uniromas.it

related through RDF statements. Indeed, RDF is the “de-
facto” standard language for the representation of semantic
information: it encodes Web data as a labeled directed graph
in which the nodes represent the resources and links repre-
sent semantic relationships between resources. Queries over
RDF data can also be expressed as graph and, basically,
query answering consists in finding the portion of the data
graph that matches with the given query graph,

Let us consider for instance the RDF graph G4 depicted
in Figure 1, taken from [2]: it represents a simplified portion
of the GOvTRACK' , a database that stores events that oc-
curred in the US Congress. The graph query Q)1 asks for all
amendments (?v1) sponsored by Carla Bunes to a bill (7v2)
on the subject of Health Care that was originally sponsored
by a male person (7v3).

In this framework, the rapid increase of data availabil-
ity has raised a number of data management issues [5, 6].
Among them, a major problem lies in the difficulty for users
to specify queries that retrieve the information they really
need. As a result, approximate query processing is increas-
ingly capturing the attention of researchers [2, 8, 10, 24, 29]
since they relax the matching relationship between queries
and data, and thus provide an effective support to non-
expert users, who are usually unaware of the way in which
data is organized. For instance, if we relax query answering
over RDF data, the same answer of ()1 can be returned to
the query Q2 reported in Figure 1, for which there is indeed
no exact answer.

This problem is often tackled using graph-based meth-
ods such as subgraph isomorphism, graph edit distance, and
maximum common subgraph, which however are known to
be NP-hard problems [12, 17, 18]. Therefore, many approx-
imate approaches to query answering on graph shaped data
have been proposed to reduce the complexity of the prob-
lem [2, 28, 29, 10, 26]. They rely on heuristics [26], on the
use of specific indexing structures [2, 28, 29], and on fix-
ing some threshold on the maximum number of hops (i.e.
node/edge additions/deletions needed to perfectly match
the query graph with the underlying graph database) that
are allowed [10]. All these methods work well on biological
and chemical data but are usually not suited for semantic
and social data, where noise is often present and the or-
ganization is totally different [18]. For this reason, specific
methods for finding similarities and patterns over graph data
have been proposed [15, 18]. Still, the high computational
complexity makes these methods unfeasible in many practi-
cal situations.

L http:/ /www.govtrack.us

http://www.govtrack.us

sponsor

(b) A query Q1

In this paper, we propose a new measure of similarity for
RDF data that approximates the notion of graph edit dis-
tance and can be computed in linear time with respect to the
size of the input. This measure is used in a novel technique
for approximate query answering over RDF data based on
the simple observation that different paths of a query graph
usually represent different semantic relationships between
nodes. For instance, the edges of Q1 in the above example
say that Male is the gender of someone sponsoring something
on the subject Health Care. It follows that query answering
can proceed as follows: first, the query is decomposed into
a set of paths that start from a source and end into a sink,
then those paths are matched against the data graph, and
finally the data paths that best match the query paths are
combined to generate the answer. With a suitable relax-
ation of the notion of alignment between graph paths and
data paths, we can adopt the same strategy to generate ap-
proximate answers to queries. Consequently, our similarity
measure basically accounts for the degree of alignment of
two paths in a graph.

In order to test the feasibility of our approach, we have de-
veloped a system? for querying RDF data that implements
the above mentioned technique for query answering. Exper-
iments over widely used benchmarks have shown that our
technique outperforms other approaches, in terms of both
effectiveness and efficiency.

The rest of the paper is organized as follows. In Section 2
we discuss related work. In Section 3 we introduce some pre-
liminary notions and definitions. In Sections 4 we illustrate
our similarity distance with its properties, in Section 5 we

2 A prototype application is available at https://www.
dropbox.com/sh/d5ulu24qnyqgl8f/70efq8-qVa

@ —
aTo

sponsor
aTo
B0045

Pierce
Dickes

subject

(c) A query Q2

Figure 1: An example of data and query graph

show an approach supported by the metric that solves the
approximate query answering over RDF. The experimental
results on the effectiveness of the metric for such algorithms
are shown in Section 6 and finally, in Section 7, we draw
some conclusions and sketch some future work.

2. RELATED WORK

Many research efforts have focused on graph similarities,
specially from the field of graph matching [12]. In fact, a
first category of works relies on subgraph isomorphism [30].
However the well-known intractability of the problem in-
spired approximate approaches to simplify the problem [12,
9]. In particular, graph simulation techniques has been used
to make graph matching tractable. A second category of
works focuses on the adoption of special indexes. In particu-
lar, several approaches have proposed in-memory structures
for indexing the nodes of the data graph [23], while oth-
ers have proposed specific indexes for the efficient execution
of SPARQL queries and joins [20]. In addition, other pro-
posals tackle the problem by indexing graph substructures
(e.g., paths, frequent subgraphs, trees). Typically, these in-
dexes are exploited in problems dealing with graph match-
ing, to filter out graphs that do not match the input query.
Approaches in this area can be classified in graph indexing
and subgraph indexing. In graph indexing approaches, such
as glndex [25], TreePi [27], and FG-Index [4], the graph
database consists of a set of small graphs. The indexing
aims at finding all the database graphs that contain or are
contained in a given query graph. On the other hand, sub-
graph indexing approaches, such as DOGMA [2], TALE [22],
GADDI [28], SAPPER [29], and Zeng et al. [26] aim at in-
dexing large database graph, with the goal of finding effi-
ciently all (or a subset of) the subgraphs that match a given

https://www.dropbox.com/sh/d5u1u24qnyqg18f/7Oefq8-qVa
https://www.dropbox.com/sh/d5u1u24qnyqg18f/7Oefq8-qVa

query. Finally, there are works on reachability [16, 21] and
distance queries [3] based on testing the existence of a path
between two nodes in the graph and on the evaluation of the
distance between them. An interesting approach is proposed
in [10] where the authors reformulate the query graph in
terms of a bounded query in which an edge denotes the con-
nectivity of nodes within a predefined number of hops. This
guarantees a cubic time complexity for the graph matching
problem.

Most of the mentioned works are focused on medical,
chemical and proteinic networks and they are usually not ef-
ficient over semantic and social data [18]. Therefore, special-
ized metrics where proposed [15, 18]. GMO [15] introduces
a structural metric based on a bipartite graph, NESS [18]
proposes a measure based on both topological and content
information in the neighborhood of a node of the graph. All
these approaches differ quite a lot from our method. In-
deed, we tackle the problem using a technique that takes
into account the structural constraints on how different re-
lations between nodes have to be correlated. It relies on the
tractable problem of alignment between paths.

3. PRELIMINARY ISSUES

This section states some preliminary definitions useful to
introduce the notion of similarity.

3.1 Basics

RDF is the standard language for the representation of
semantic information: it encodes Web data as a labeled
directed graph in which the nodes represent resources and
links represent semantic relationships between them. A re-
source can be either a Web entity identified by a URI or a
value (also called literal). Given a set U of URIs and a set
L of literals, let us assume a set Xy = U U L of node labels
and a set X g = U of edge labels. RDF data can be formally
represented as a labelled directed graph G as follows.

DEFINITION 1 (DATA GRAPH). A data graph G = <
N,E,Ln,Lg > is a labelled directed graph where N is a
set of nodes, E C N X N is a set of ordered pairs of nodes,
called edges, and Ln and Lg are labeling functions associ-
ating an element of ¥n to each node in N and an element
of X g to each edge in E, respectively.

Let VAR be a set of variables, denoted by the prefix “?” a
query graph @ is defined as follows.

DEFINITION 2 (QUERY GRAPH). A query graph Q is a
data graph where Xy =U U L U VAR and X = U U VAR.

A substitution for a query graph @ is a function that maps
the variables in @ to either URIs or literals. A transforma-
tion T on a query graph is a sequence of the following basic
update operations: node and edge insertion, node and edge
deletion, and labeling modification of both nodes and edges.

DEFINITION 3 (QUERY ANSWER). An (approzimate)
answer to a query graph @Q over a data graph G is a
subgraph G’ of G for which there exists a substitution ¢ and
a transformation T such that G' = 7(¢(Q)). If T is empty,
G’ is an exact answer to Q.

Intuitively, an answer a; = 71(¢1(Q)) is more relevant
than another answer as = 72($2(Q)) if a1 is more similar

to @ than az, that is, 71 contains a lower number of opera-
tions than 7. In the context of RDF data in which nodes
represent concepts and edges represent relationships, it is
useful to associate a weight of relevance to each basic up-
date operation. For instance, it is reasonable, in the RDF
domain, that the modification of a label is less relevant than
a node insertion, since the latter increases the semantic dis-
tance between concepts. Therefore, let w be a function that
associates a weight of relevance to each basic operation ©.
We say that the cost v of a transformation 7 = ®10...00,

is y(1) =z > 7 (w(®4)).

DEFINITION 4 (RELEVANCE OF AN ANSWER). An an-
swer a1 = 11(¢1(Q)) is more relevant than another answer

az = 72(¢2(Q)) if v(11) < ¥(72).

This notion generalizes the definitions of graph edit dis-
tance and graph isomorphism. In fact, if a1 = 71 (¢1(Q)) is
more relevant than another answer a2 = 72(¢2(Q)), it means
that: (i) a1 is more similar to @ than as, (ii) the graph edit
distance between a; and @ is lower than the graph edit
distance between az and @, and also that (iii) a; is more
isomorphic to @ than az. We will show in the next section
that our measure for RDF is coherent with this definition.

3.2 Path Alignment

In RDF data, different paths denote different relationships
between nodes. For instance, the edges of @)1 indicate that
Male is the gender of someone sponsoring something on the
subject Health Care. Similarly, we can explain the relation-
ships in the paths of the data graph of Figure 1(c). As usual,
in a graph a node is a source if it has no incoming edges,
while it is a sink if it has no outcoming edges. A path in a
graph is a sequence of labels from a source to a sink.

DEFINITION 5 (PATH). Giwen a data graph G =
{N,E,Ln,Lg}, a path is a sequence b, —le; —lpy, — ... —
le, , — ln, where l,;, = Ly(n;), le; = Lg(ei), ni € N,
ei € E, n1 is a source and ny is a sink.

Sources are used as starting points for navigating the
graph through paths. If sources are not present in the given
data graph, we promote the hub nodes to play this role. A
node is a hub in a data graph G if the difference between the
number of outgoing edges and the number of the incoming
edges is maximum in G.

The data graph in Figure 1 has seven sources (the double-
marked nodes) and two sinks (Health Care and Male, marked
in gray). An example of path is:

Pz = JR-sponsor-A1589-aTo-B0532-subject-HC

where JR and HC denote Jeff Ryser and Health Care, respec-
tively. The length of a path is the number of nodes occurring
in the path, while the position of a node corresponds to its
position in the path. For instance, p. has length 4 and the
node A1589 has position 2. The query @ in Figure 1 has
the following paths:

q1: CB-sponsor-?vl-aTo-?v2-subject-HC
q2 : ?v3-sponsor-?v2-subject-HC
g3 : ?v3-gender-Male

Our measure evaluates the similarity between an RDF
graph a; and another RDF graph @ by applying substitu-
tions and transformations to the paths of). This operation
is called alignment.

DEFINITION 6 (ALIGNMENT). Given an answer a; and
a query graph Q an alignment is a substitution ¢ and a trans-
formation T of a path p of Q such that T(é(p)) is a path of
;.

Intuitively, we will calculate the similarity distance by
computing alignments on the paths of the graphs.

4. A SIMILARITY MEASURE

In this section we define the RDF similarity distance,
called score, and we show how it is coherent with the notion
of relevance given in the previous section.

4.1 Scoring function

The function score is an approximate implementation of
the general notion of relevance (Definition 4) that can be
computed in linear time against the size of the data to as-
sess. The function score simulates the relevance of answers
a; by taking into account two different aspects, quality and
conformity. The former measures how much the paths re-
trieved align with the paths in the query. The latter mea-
sures how much, in a;, the combination of paths retrieved is
similar to the combination of the paths in the query.

The first aspect that score considers is the quality of align-
ment between paths of an answer a; and paths of a query Q
as follows:

Alai,Q) = > (A(p.q))

q€Q

In this formula, ¢ is a path of @, p is the path of a; that
originates from an alignment 7o¢ of ¢ (that is, p = 7(¢(q))),
and A is a function defined as follows:

Ap,q) =(a-ny+b-ny)+cng+d-ng) (1)

In this expression: (i) ny and ny are, respectively, the
number of nodes and edges of p that are not present in q,
and (ii) ny and ny are, respectively, the number of nodes
and edges inserted in ¢ by 7. Finally, a, b, ¢ and d are
parameters that serve to take into account the weights of
relevance of the operations in 7 (see Definition 4).

The second aspect that the score function considers is
the conformity between the combination of the paths in the
solution and the combination of the paths in the query. This
is evaluated as follows:

U(ai, Q) = Y (g 5,6 05))

qi,9; €EQ

In this equation, ¢; and ¢; are paths of @, p; and p; are
paths of a; that originate from alignments 7; 0 ¢; and 7; o ¢;
of ¢; and g; respectively (that is, p; = 7i(¢:(q:)) and p; =
7i(¢;(g;))), and 1 is a function defined as follows:

Ix(gqi,95)| .
€ T, if i) >0
U(qi, g5, pi, pj) = Ix(pipy)7 (P)l
e Ix(gi,q)l, if [x(pi;pj)| =0

where x is a function that associates with each pair of paths
(p1,p2) the set of nodes in common between p; and p2. It
follows that 1(q;,qj,pi,p;) returns the ratio between the
sizes of x(ps,p;) and x(gs, ¢;). Finally, e is a parameter that

serves to take into account the weight of the conformity in
score. This is very useful in those applications where the
topology and the interconnections within the solutions are
very important (e.g., in social network analysis), sometimes
even more than the content of the data themselves.

The final score function is then computed as:

score(ai, Q) = A a;, Q) + ¥(a;, Q)
4.2 Score and relevance

It turns out that, with a suitable choice of the parame-
ters in Equation 1 that considers the weights of relevance
assigned to the basic operations, score is coherent with the
notion of relevance of an answer, that is, for each pair of an-
swers a1 and as for a query @ such that a; is more relevant
than as we have that score(a1,Q) < score(az, Q).

THEOREM 1. Given a query graph Q and a data graph G,
for each pair of answers a; and a; for Q over G, if a; is more
relevant than a; then we have score(a;, Q) < score(a;, Q).

Proof. Let OF, Oy and ®f be basic update operations
of node insertion, node deletion, and labeling modification,
respectively. Analogously, ©®%, ®F and ®F are the respec-
tive operations on edges. On these operations, we fix the
function w: (i) w(Oy) = a, (ii) w(OF) = b, (iii) w(OF) = ¢
and (iv) w(®%) = d. We consider, as in other works [18],
w(®x) =0 and w(®F) = 0 because we do not want to pe-
nalize the case where the answer gathers more labels than Q.

Now, let us count the number of basic update operations
in a transformation 7; for an answer a;. In this case: ny
and ny are, respectively, the number of nodes and edges of
a; that are inserted in @, and ny and n% are, respectively,
the number of nodes and edges updated in Q by T;.

The cost of (7)) is ny -a+ny -b+ng-c+np -d
Let a1 = 71(¢1(Q)) and a2 = 72(¢2(Q)) be two answers
over a query). Considering, from Definition 4, that a; =
®10...0®! is more relevant than a; = ®fo...0 @7, we
have that

v(m1) < y(72) 2
But for a path p € a; we have that y(7;) = A(p, Q). Then, if
we generalize Equation 2 to all the paths of the two answers
a1 and az we obtain

Afar,Q) < Afaz,Q) 3)
that satisfies the hypothesis for the first aspect of score.
With score we have an upper bound of the notion of rele-
vance because if a node has a mismatch in @ and it is in
common among more than one path, then it gets counted
more than once in ny and ny. The conformity ¥(a;, @)
follows a similar trend than A(a;, Q). In fact, more are the
mismatching elements (i.e. nodes and edges) and lower is
the number of common nodes. Consequently, the number
of intersections between the paths in an answer conforming
to the intersections between the paths of the query is also
lower. In our case we have that

¥(a1,Q) < ¥(az, Q). (4)
Given Equation 3 and Equation 4, it follows that
score(ar, Q) < score(asz, Q).

O

4.3 Computation of Alignment

In order to measure A in score we have to compute align-
ments between paths in a and paths in Q. a and @ are
decomposed into a set of paths that start from a source and
end into a sink. Then the paths of a are aligned against
paths of Q. In our example, this method would decompose
Q1 in the following paths:

sponsor aTo subject
q1: Carla Bunes—P2%T 91 412, 2y2 FU07 ealth Care
sponsor subject
qz: W32 w227 Health Care
ender
q3: 3 g Male

Now imagine to have a; extracted from G4 that is formed
by the following paths:

p1: Carla Bunes SPOTSOT, AOO56 aTo B1432 subject Health Care
p2: Pierce Dickens—222%",B1432 subject ealth Care
p3 : Pierce Dickens gender Male

Note that in the example above the result is an exact an-
swer to @1, but the same strategy can be adopted to com-
pare paths that are not exactly matches and thus, with a
lower degree of similarity.

We can now compute the quality of alignments between
the paths p in a1 and the paths ¢ in Q. They are done by
inserting, deleting and modifying nodes in ¢ by proceeding
with a scan contrary to the direction of the edges. For in-
stance let us consider g1 and g2 from the query graph Q1
and the path

p = CB-sponsor-A0056-aTo-B1432-subject-HC

from G4. We evaluate the score of p with respect to both
q1 and g2 as follows

q1 : CB-sponsor-?v1l-aTo-?v2-subjec-HC
T1(p1(q1)) : SB—sponsor— A0056 -aTo- B1432 -subject-HC
q2 : ?v3-sponsor-?v2-subject-HC
T2(¢2(q2)) : gg—sponsor— A 0056 - aTo-B1432 -subject-HC
In this case g1 requires only a substitution ¢ on the variables
while g2 employs a transformation 7 to insert aTo-B1432
and a substitution ¢ on the variables. In the former case we
have A(p,q1) = (04+0)+(04+0) =0, since ny = ny =ng =
ng = 0. In the latter case A(p, g2) = (0+b) + (0 + d), since
ny =ng =0, and ny = ng = 1. If we set b = 0.5 and
d =1, we have A(p,q2) = 1.5 (i.e. p has the best alignment
with ¢1). In the same way, given

p/ = JR-sponsor-A1589-aTo-B0532-subject-HC

we can calculate A(p’,¢1) = (a+ 0) 4+ (04 0), since ny, =1
due to the mismatch between CB and JR. If we set a = 1,
Ap',q1) =1 (i.e. ¢1 has a better alignment with p than p’).

It is straightforward to demonstrate that the time com-
plexity of the alignment is O(I) where I = |p| + |q| is the
sum of the nodes and edges of the paths in p and q.

S. QUERY ANSWERING

In this section we summarize our procedure for approxi-
mate query answering over RDF graphs. Further details can
be found in [7].

We exploit score to define an algorithm for approximate
query answering over RDF. Given a data graph G and

Figure 2: An example of intersection query graph.

a query graph @, we aim at finding the top-k answers
ai,...,ar to @ according to their relevance.

The approach is composed of two main phases: the indez-
ing (done off-line), in which all the paths of G are indexed,
and the query processing (done on-the-fly), where the query
evaluation takes place. The first task will be described in
more detail in Section 6.

In the second phase, all paths PD for @) are retrieved in G
by exploiting the index and the best solutions are generated
from PD by adopting a strategy that guarantees a polyno-
mial time complexity with respect to the size of PD. This
task is performed by the following main steps:

Preprocessing. Given a query graph @, in this step the
set PQ of all paths is computed on the fly by travers-
ing @ from each source to any sinks. We exploit an
optimized implementation of the Breadth-first search
(BFS) traversal. The elements of PQ are organized in
the the so-called intersection query graph (IG).

The nodes of IG are the paths of @, while an edge
(¢i, g;) means that g; and ¢; have nodes in common.
For instance, referring to Figure 1, PQ consists of the
following paths.

q1 : Carla Bunes-sponsor-?v1-aTo-?v2-subject-Health Care
q2 : ?v3-sponsor-?v2-subject-Health Care
q3 : ?v3-gender-Male

The intersection query graph built from q1, g2 and g3 is
depicted in Figure 2. For example, this data structure
keeps track of the fact that ¢i and g2 have nodes in
common, i.e. 7v2 and Health Care, as ¢2 and g3 have
nodes in common, i.e. only 7v3.

Clustering. In the second step we build a cluster for each
element ¢ of PQ. Then, we group in the same cluster
all the paths p of G having a sink that matches the
sink of g. If ¢ provides a variable in place of the sink,
we retrieve the first (constant) value v occurring in ¢
(w.r.t. the end of ¢, i.e. in the contrary way) and we
group in the same cluster all the paths p of G con-
taining a label matching v. Before the insertion of a
path p in the cluster for g, we evaluate the alignment
needed to obtain p from ¢. This allows us to compute
the score of p, i.e. A(p,q). The paths in a clusters are
ordered according to their score with the greater com-
ing first. Note that the same path p can be inserted in
different clusters, possibly with a different score. As
an example, given the data graph G4 and the query
graph @1 of Figure 1, we obtain the clusters shown in
Figure 3. In this case clusters cli, clo and cl3 corre-
spond to the paths ¢1, g2 and g3 of PQ, respectively;
note the scores at the right side of each path and in
particular the path p; occurring in both cl; and cl2
with different scores, i.e. 0 in ¢ly and 1.5 in cls.

Search. The last step aims at generating the most relevant
solutions by combining the paths in the clusters built

1
(a2, a4): [0.5]

(a2, 494):[0.5] ,/
¢ (dp,93):[1]

(92, a4): [1]

(9z, a3):[1]
(a2, a4): [1]

Figure 4: Forest of paths.

p1: CB-sponsor-A0056-aTo-B1432-subject-HC [0]

p2 : JR-sponsor-A1589-aTo-B0532-subject-HC [1]
| opee KF-sponsor-A1232-aTo-B0045-subject-HC [1]
@1 ps: IM-sponsor-A0772-aTo-B0045-subject-HC 1]
ps : JM-sponsor-A1232-aTo-B0045-subject-HC [1]
pe : PD-sponsor-A0467-aTo-B0532-subject-HC [1]
pr: JR-sponsor-B0045-subject-HC [0]
ps: PT-sponsor-B0532-subject-HC [0]
po: AN-sponsor-B1432-subject-HC [0]
pio : PD-sponsor-B1432-subject-HC [0]
L | P CB-sponsor-A0056-aTo-B1432-subject-HC [1.5]
“2: 1 pla: JR-sponsor-A1589-aTo-B0532-subject-HC [1.5]
p1a : KF-sponsor-A1232-aTo-B0045-subject-HC [1.5]
p1a . JM-sponsor-A0772-aTo-B0045-subject-HC [1.5]
p15 : JM-sponsor-A1232-aTo-B0045-subject-HC [1.5]
p16 : PD-sponsor-A0467-aTo-B0532-subject-HC [1.5]
pi7 : JR-gender-Male [0]
Lo | P KF-gender-Male [0]
| pig: IJM-gender-Male [0]

p2o : PD-gender-Male [0]

Figure 3: An example of the clustering step.

in the previous step. This is done by picking and com-
bining the paths with greatest score from each cluster.
The intersection query graph allows us to verify effi-
ciently if they form a solution. As an example, given
the cluster in Figure 3, the first solution is obtained
by combining the paths pi, pio and pgo that are the
elements with the greatest score in each corresponding
cluster and provide the best alignment with the paths
of PQ associated to the clusters.

The most tricky task of the whole process occurs in the
third step above. Here, we aim at generating directly the
top-k solutions by trying to minimize the number of com-
binations between paths. This is done by organizing the
combinations of paths in a forest where nodes represent the
retrieved paths, while edges between paths means that they
have nodes in common. The label of each edge (pi,p;) is
((giyq5) : [¥(qi,q5,pi,p;)]) where ¢; and g; are the paths
corresponding to the clusters where p; and p; were included,
respectively.

For instance, Figure 4 reports the forest for the paths with
the higher score extracted from the clusters in Figure 3.
The label on the edge (p1o, p1) indicates that if p1o and p1
originate from g2 and qi, respectively, then (g2, g1, P10, P1)
is 1. Conversely, the label on the edge (p7, p1) indicates that
¥(q2,q1,p7,p1) is 0.5. Note that in the forest the edge (pr,

p1) is dashed since the label is not 1. The tree in the forest
with nodes p1, pio and p2o yields the first solution.

Such strategy exhibits, in the worst case, a quadratic time
complexity w.r.t. the number of nodes of the data graph,
that is O(hx I?), where I is the number of paths retrieved by
the index and h is the depth of the query graph @ (see [7]
for a complete demonstration). In Section 6, experiments
will show how our technique scales seamlessly with the size
of the input.

6. EXPERIMENTAL RESULTS

We implemented our approach in SAMA® | a Java sys-
tem with a Web front end. We have compared SAMA with
three representatives graph matching systems: SAPPER [29)],
BoOUNDED [10] and DoGMA [2]. Experiments were conducted
on a dual core 2.66GHz Intel Xeon, running Linux RedHat,
with 4 GB of memory and a 2-disk 1Tbyte striped RAID
array.

6.1 Indexing

To build solutions efficiently, we index the following in-
formation: vertices’ and edges’ labels of the data graph G
(for element-to-element mapping) and the paths ending into
sinks, since they bring information that might match the
query. The first information enables to locate vertices and
edges matching the labels of the query graph, the second
allows us to skip the expensive graph traversal at runtime.
The indexing process is composed of three steps: (i) hashing
of all vertices’ and edges’ labels, (ii) identification of sources
and sinks, and (iii) computation of the paths. The first and
the second step are relatively easy. The third step requires
to traverse the graph starting from the sources and following
the routes to the sinks. We have implemented an optimized
version of the Breadth-First-Search (BFS) paradigm, where
independently concurrent traversals are started from each
source. Similarly to [2], and differently from the majority of
related works (e.g [10]), we assume that the graph cannot fit
in memory and that can only be stored on disk. Specifically,
we store the index in a GraphDB, that is HyperGraphDB*
(HGDB) v. 1.1: it models data in terms of hypergraphs.
Let us recall an hypergraph H is a generalization of a graph,
where an edge can connect any number of vertices. Formally
H = (X, E) where X is a set of nodes or vertices, and E is
a set of non-empty subsets of X, called hyperedges. In other
words, FE is a subset of the power set of X. This represen-
tation allows us to define indexes on both vertices and hy-
peredges: X = {zm|m € M} and E = {es|f € F,eyf C X},

3 A prototype application is available at https://www.
dropbox.com/sh/d5ulu24qnyqgl8f/70efq8-qVa
4 http://www.kobrix.com/hgdb.jsp

https://www.dropbox.com/sh/d5u1u24qnyqg18f/7Oefq8-qVa
https://www.dropbox.com/sh/d5u1u24qnyqg18f/7Oefq8-qVa
http://www.kobrix.com/hgdb.jsp

A0467

sponsor

Pierce
Dickes

. Dickes "
& N

s el

Figure 5: An example to represent a data graph G (left side) in a hypergraph H (right side)

Table 1: HyperGraphDB indexing

DG #Triples |HV| |HE]| t Space
PBlog 50K 1,hK 96K 1 sec 56 MB
GOV 1M 280K 330K 4 min 340 MB
KEGG 1M 300K 606K 7min 700 MB
Berlin 1M 320K 700K 10 min 910 MB
IMDB 6M 900K 3M 47 min 1,2 GB
LUBM 12M 1M 15M 102 min 12,9 GB
UOBM 12M IM 15M 102 min 12,9 GB
DBLP 26M AM 17M 441 min 23,6 GB

where each vertex x,, and edge ey are indexed by an index
m € M and f € F, respectively. Figure 5 shows an example
of reference.

The matching is supported by standard IR engines (c.f.
Lucene Domain index (LDi)®) embedded into HGDB. In
particular we define a LDi index on the labels of nodes and
edges. In this way, given a label, HGDB retrieves all paths
containing data elements matching the label in a very effi-
cient way (i.e. exploiting the cursors). Further, semantically
similar entries such as synonyms, hyponyms and hypernyms
are extracted from WordNet [11], supported by LDi.

In our experiments we consider real RDF datasets, such
as PBLOG® , GovTrACK, KEGG, IMDB [14], DBLP, and
synthetic datasets, such as BERLIN [1], LUBM [13] and
UOBM [19]. Table 1 provides importing information for
any dataset: number of triples, number of nodes (|HV|) and
number of generated hyperedges (|HE|) in HGDB, time to
create the index on HGDB (t) and memory consumption on
disk. In our case, building the index takes hours for large
RDF data graphs, due to the demanding traversal on the
complete large graph, and requires GB of memory resources
on disk to store data and metadata.

6.2 Query Execution

In this experiment, for each indexed dataset we formulated
12 queries in SPARQL of different complexities (i.e. number
of nodes, edges and variables).

5 http://lucene.apache.org/
6 http://www-personal.umich.edu/ mejn/netdata,/

100000

10000
W
2 1000
g
é‘ 100
10
puint RiLL BRI NARL RIEY WAL NELL RIL. BELL RELL MEED WAL |
Ql Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12
OSama OSapper EBounded MDogma
(a) cold-cache
1000
® 100
E 10

1
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

OSsama OSapper EBounded MDogma
(b) warm-cache

Figure 6: Average response time on LUBM: bars
refer each system, using different gray scales, i.e.
from Sama, white bars, to Dogma, black bars

We ran the queries ten times and we measured the aver-
age response time, in ms and logarithmic scale. Precisely,
the total time of each query is the time for computing the
top-10 answers, including any preprocessing, execution and
traversal. We performed both cold-cache and warm-cache
experiments. To make a comparison with the other systems,
we reformulated the 12 queries by using the input format of
each competitor. In SAMA we set the coefficients of the scor-
ing function as follows: a =1, b= 0.5, c =2 and d = 1. Due
to space constraints, we cannot describe in detail results on
every dataset, neither the query lists” . Therefore we show
the behavior of all systems with respect to LUBM, the most

7 At https://www.dropbox.com/sh/d5ulu24qnyqgl8f/
70efq8-qVa you can find the complete set of queries

http://lucene.apache.org/
http://www-personal.umich.edu/~mejn/netdata/
https://www.dropbox.com/sh/d5u1u24qnyqg18f/7Oefq8-qVa
https://www.dropbox.com/sh/d5u1u24qnyqg18f/7Oefq8-qVa

700

y =-6E-08x? + 0,0113x + 173,19

msec

14 2,4 34 4.4 54 6,4 7.4 8,4 9.4 10,4

| = #extracted paths from G (unit 100.000)

700
650
600
550

5 500

450

400

350

300

3 8 13 18 23

nodes in Q

(b)

variables in Q

(c)

Figure 7: Scalability of Sama on LUBM w.r.t. (a)
the number I of extracted paths from G, (b) the
number of nodes in @ and (¢) the number of vari-
ables in Q

representative in terms of number of triples and complexity.
The query run-times are shown in Figure 6.

In general BOUNDED performs better than DoGMA, while
SAPPER is less efficient. SAMA performs very well with re-
spect to all competitors: it is supported by the index that
retrieves all needed data elements in an efficient way (i.e.
skipping data graph traversal at runtime and supporting
parallel implementations).

Another aspect we test is the scalability of our approach.
Such aspect is analyzed in more depth by evaluating the
scalability of SAMA with respect to both I and @ through
distinct diagrams, as illustrated in Figure 7 (i.e. it refers to
cold-cache experiments). Each diagram provides the trend-
line (displaying also the associated equation): in any case
the behavior of SAMA is quadratic with respect to the time
complexity (i.e. we have the same for warm-cache experi-
ments).

6.3 Effectiveness
The last experiment evaluates the effectiveness of SAMA

9000
7000

5000

1000
Ql Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

of matches

OSama OSapper OBounded MDogma

Figure 8: Effectiveness on LUBM: bars refer each
system, using different gray scales, i.e. from Sama,
white bars, to Dogma, black bars

and of the other competitors. The first measure we used
is the reciprocal rank (RR). For a query, RR is the ratio
between 1 and the rank at which the first correct answer
is returned; or O if no correct answer is returned. In any
dataset, for all 12 queries we obtained RR=1. In this case
the monotonicity is never violated. To make a comparison
with the other systems we inspected the matches found in
terms of the solutions returned. Figure 8 shows the effec-
tiveness of all systems on LUBM, where we run the queries
without imposing the number k of solutions.

In this case SAMA and SAPPER always identify more mean-
ingful matches than both BOUNDED and DOGMA. This is due
to the approximation operated by SAMA and SAPPER with
respect to the others. We remind that the evaluation of
the matches was performed by experts of the domain (e.g.
LUBM). Finally, to support the meaningful of results, we
measured the interpolation between precision and recall.

Figure 9 shows the results on LUBM: for SAMA we depict
three different trends with respect to the range of |Q|. As to
be expected, queries with limited number of paths presents
the highest quality (i.e. a precision in the range [0.5,0.8]).
More complex queries decrease the quality of results, due to
more data elements retrieved by the approximation, present-
ing good quality though. Such result confirms the feasibility
of our system. The effectiveness on the other datasets fol-
lows a similar trend. On the other hand, as to be expected,
the precision of the other systems dramatically decreases for
large values of recall: BOUNDED and DOGMA do not exploit
an imprecise matching, while SAPPER introduces noise (i.e.
not interesting approximate results) in high values of recall.

7. CONCLUSION AND FUTURE WORK

In this paper we have presented a similarity measure for
approximate querying of large RDF data sets. The approach
is based on a strategy for query answering aimed at select-
ing and combining paths of the underlying data graph that
best align with paths of the query. The similarity between
queries and candidate answers is then evaluated by means
of a score function that measures the degree of alignment of
paths. In the worst case our technique exhibits a quadratic
computational cost with respect to the size of the input and
experimental results show that it behaves, in most cases,
better than other approaches in terms of both efficiency and
effectiveness.

This work opens several directions of further research.

Precision

O-|g| in [1,4]
=+-poGMA
1,2

<F|g| in [5,10] *|Q| in [11,17]
—>-BOUNDED -X~SAPPER

08
0,6
04
0,2

o1 02 03 04 05 06 07 08 09 1

Recall

Figure 9: Effectiveness on LUBM: Precision and Re-
call of Sama

From a conceptual point of view, we aim to introduce im-
provements on the construction of answers and on the com-
putation of the scoring function. From a practical point of
view, we plan to implement the approach in a Grid environ-
ment (for instance using Hadoop/Hbase) and develop opti-
mization techniques to speed-up the creation and the update
of the index, as well as compression mechanisms for reducing
the overhead required by its construction and maintenance.

8.
1]

2]

3]

[10]

[11]

[12]

REFERENCES

C. Bizer and A. Schultz. The berlin sparql benchmark.
Int. J. Semantic Web Inf. Syst., 5(2):1-24, 20009.

M. Brocheler, A. Pugliese, and V. S. Subrahmanian.
Dogma: A disk-oriented graph matching algorithm for
rdf databases. In ISWC, pages 97-113, 2009.

E. P. F. Chan and H. Lim. Optimization and
evaluation of shortest path queries. VLDB J.,
16(3):343-369, 2007.

J. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index:
towards verification-free query processing on graph
databases. In SIGMOD, pages 857-872, 2007.

R. De Virgilio, F. Giunchiglia, and L. Tanca, editors.
Semantic Web Information Management - A
Model-Based Perspective. Springer Verlag, 2010.

R. De Virgilio, F. Guerra, and Y. Velegrakis, editors.
Semantic Search over the Web. Springer Verlag, 2012.
R. De Virgilio, A. Maccioni, and R. Torlone.
Approximate querying of rdf graphs via path
alignment. Technical Report RT-DIA-200,
http://www.dia.uniroma3.it /Plone/ricerca/technical-
reports/2012, Dipartimento di Informatica e
Automazione, November 2012 - [submitted)].

R. De Virgilio, G. Orsi, L. Tanca, and R. Torlone.
Nyaya: A system supporting the uniform management
of large sets of semantic data. In ICDE, pages
1309-1312, 2012.

W. Fan and P. Bohannon. Information preserving xml
schema embedding. ACM Trans. Database Syst.,
33(1), 2008.

W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu.
Graph pattern matching: From intractable to
polynomial time. PVLDB, 3(1):264-275, 2010.

C. Fellbaum, editor. WordNet An Electronic Lexical
Database. The MIT Press, 1998.

B. Gallagher. Matching structure and semantics : A

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

23]

(24]

(25]

[26]

27]

(28]

29]

(30]

survey on graph-based pattern matching. Artificial
Intelligence, pages 45—53, 2006.

Y. Guo, Z. Pan, and J. Heflin. Lubm: A benchmark
for owl knowledge base systems. J. Web Sem.,
3(2-3):158-182, 2005.

O. Hassanzadeh and M. P. Consens. Linked Movie
Data Base (Triplification Challenge Report). In
I-SEMANTICS, pages 194-196, 2008.

W. Hu, N. Jian, Y. Qu, and Y. Wang. Gmo: A graph
matching for ontologies. In Integrating Ontologies,
2005.

R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 3-hop: a
high-compression indexing scheme for reachability
query. In SIGMOD, pages 813-826, 2009.

D. Justice and A. O. Hero. A binary linear
programming formulation of the graph edit distance.
IEEE Trans. Pattern Anal. Mach. Intell.,
28(8):1200-1214, 2006.

A. Khan, N. Li, X. Yan, Z. Guan, S. Chakraborty, and
S. Tao. Neighborhood based fast graph search in large
networks. In SIGMOD Conference, pages 901-912,
2011.

L. Ma, Y. Yang, Z. Qiu, G. T. Xje, Y. Pan, and

S. Liu. Towards a complete owl ontology benchmark.
In ESWC, pages 125-139, 2006.

T. Neumann and G. Weikum. x-rdf-3x: Fast querying,
high update rates, and consistency for rdf databases.
PVLDB, 3(1):256-263, 2010.

A. Poulovassilis and P. T. Wood. Combining
approximation and relaxation in semantic web path
queries. In ISWC, pages 631-646, 2010.

Y. Tian and J. M. Patel. Tale: A tool for approximate
large graph matching. In JCDE, pages 963-972, 2008.
T. Tran, H. Wang, S. Rudolph, and P. Cimiano. Top-k
exploration of query candidates for efficient keyword
search on graph-shaped (rdf) data. In ICDE
Conference, pages 405—416, 2009.

P. T. Wood. Query languages for graph databases.
SIGMOD Record, 41(1):50-60, 2012.

X. Yan, P. S. Yu, and J. Han. Graph indexing: A
frequent structure-based approach. In SIGMOD, pages
335-346, 2004.

Z. Zeng, A. K. H. Tung, J. Wang, J. Feng, and

L. Zhou. Comparing stars: On approximating graph
edit distance. PVLDB, 2(1):25-36, 2009.

S. Zhang, M. Hu, and J. Yang. Treepi: A novel graph
indexing method. In ICDE, pages 966-975, 2007.

S. Zhang, S. Li, and J. Yang. Gaddi: distance index
based subgraph matching in biological networks. In
EDBT, pages 192-203, 2009.

S. Zhang, J. Yang, and W. Jin. Sapper: Subgraph
indexing and approximate matching in large graphs.
PVLDB, 3(1):1185-1194, 2010.

L. Zou, L. Chen, and M. T. Ozsu. Distance-join:
Pattern match query in a large graph database.
PVLDB, 2(1):886-897, 2009.

