
QUEPA: QUerying and Exploring a Polystore by
Augmentation

Antonio Maccioni
Roma Tre University

Rome, Italy
maccioni@inf.uniroma3.it

Edoardo Basili
Roma Tre University

Rome, Italy
basili@inf.uniroma3.it

Riccardo Torlone
Roma Tre University

Rome, Italy
torlone@inf.uniroma3.it

ABSTRACT
Polystore systems (or simply polystores) have been recently
proposed to support a common scenario in which enterprise
data are stored in a variety of database technologies relying
on different data models and languages. Polystores provide
a loosely coupled integration of data sources and support
the direct access, with the local language, to each specific
storage engine to exploit its distinctive features. Given the
absence of a global schema, new challenges for accessing data
arise in these environments. In fact, it is usually hard to
know in advance if a query to a specific data store can be
satisfied with data stored elsewhere in the polystore.

QUEPA addresses these issues by introducing augmented
search and augmented exploration in a polystore, two access
methods based on the automatic enrichment of the result
of a query over a storage system with related data in the
rest of the polystore. These features do not impact on the
applications running on top of the polystore and are com-
patible with the most common database systems. QUEPA
implements in this way a lightweight mechanism for data
integration in the polystore and operates in a plug-and-play
mode, thus reducing the need for ad-hoc configurations and
for middleware layers involving standard APIs, unified query
languages or shared data models. In our demonstration au-
dience can experience with the augmentation construct by
using the native query languages of the database systems
available in the polystore.

1. INTRODUCTION
Polystores are the result of the “one size does not fit all”

philosophy in a world where taking care of the peculiarities
of different kind of data became necessary [5, 8]. Let us
consider, as a practical example of a polystore environment,
the databases of a company called ACME selling music on-
line. As shown in Figure 1, each ACME department uses
a storage system that best fits its specific business objec-
tives: (i) the sales department requires ACID transactions
and uses a relational database for the purchases and the in-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2899393

ventory of products, as provided by sellers, (ii) a marketing
department uses a document store for a music and customer
catalogue, where each item is represented by a JSON doc-
ument, and (iii) a business intelligence department uses a
graph database for representing similarities among items.
In addition, there exists a key-value store containing the
products currently on clearance, which is shared among the
three departments above.

Figure 1: A polystore environment

In such scenario it is common that a user is only aware of a
single database of the polystore but does not know anything
about other databases (neither the content, nor the way to
query them and, sometimes, not even their existence). This
clearly poses new challenges for accessing and integrating
data in an effective way. To recall a relevant discussion about
polystores, the issue is that: “if I knew what query to ask, I
would ask it, but I don’t” [8].

QUEPA is a tool that shows a possible contribution to this
problem by introducing augmented search and augmented
exploration, two new methods to access a polystore based on
the automatic enrichment of data extracted from a database
with data that belong to the rest of the polystore.

Augmented search consists in the expansion of the result
of a query over a local database with data that are rele-
vant for the query but are stored elsewhere in the ploystore.
For example, if Lucy, an employee of the sales department
who only knows SQL, needs all the information available
in ACME on the album “Wish”, she submits the following
query in augmented mode:

SELECT * FROM inventory

WHERE name like ’%Wish%’

2133

http://dx.doi.org/10.1145/2882903.2899393

Taking advantage from a repository of metadata which
stores the relationships between objects in different datas-
tores, QUEPA returns the following augmented tuple reveal-
ing details about the product that are not in the database
of the sales department, including the fact that such item is
currently on clearance sale with a discount of 40%.

< o32, Cure, Wish > ⇒ (clearance: 40%)

⇓
(catalogue: {title: Wish,

artist_id: a1,

artist: The Cure,

year: 1992,

tracks: { ...}

}

)

Augmented exploration exploits the same infrastructure
and provides a more interactive and flexible way to access
data, which consists in a guided expansion of the result of
a query over a local database with related data stored else-
where in the polystore. For example, if Lucy submits the
same query above in exploratory mode, QUEPA returns the
following tuple, in which the links suggest that further infor-
mation, related to the returned tuple, is available elsewhere
and allows Lucy to decide which component of the query
result to augment.

< o32, Cure, Wish >

This process is iterative and provides a method of database
exploration [4], where the user can freely find her way
through the polystore, similarly to what happens when we
surf the Web. QUEPA is also able to suggest an initial result
to start with, based on the most frequent items accessed in
the past.

The majority of solutions to the problem of accessing data
in polystores introduce a middleware approach, where a uni-
fied language, a common system interface or a universal
data model is provided to address data heterogeneity [1,
2, 3]. These approaches introduce a generalization that not
only adds computational overhead at runtime, but also hides
the specificity and functionality these systems were adopted
for [8]. Indeed, a middleware approach tends to vanish the
expected benefits of a polystore and introduces an intrinsic
complexity that increases when new database systems take
part to the polystore. Conversely, QUEPA is a lightweight
tool that does not add abstraction layers over a polystore,
thus, it has a minimal impact on the applications running
on top of the data sources. Moreover, the augmentation
technique of QUEPA provides a soft mechanism for data in-
tegration in polystores that complements other approaches
based on cross-db joins [5], it keeps data in the original for-
mat, allows the use of the original query languages or APIs
and avoids any query translation. Finally, QUEPA is com-
patible with the most popular categories of modern database
systems and it is easily extensible to work with additional
systems.

Although it can be easily embedded on existing plat-
forms that perform complex data operations over a polystore
(e.g., [5]), we have implemented QUEPA as a stand-alone
tool that exposes a set of primitives and connects to several
database systems. We demonstrate this stand-alone version
accessible through a web user interface.

In brief, the demonstration of QUEPA aims at showing
the audience:

• the novel methods of augmented search and augmented
exploration for accessing data scattered among hetero-
geneous database systems in a polystore;

• the advantages of the “Bring Your Own Language” ap-
proach for accessing a polystore, which allows the user
to submit queries without the need to learn a new
query language;

• the value of guaranteeing the exploitation of the com-
plete functionality of each DBMS, which is the main
motivation for adopting a polystore approach;

• the simplicity of operating, in this framework, in a
plug-and-play mode, without ad-hoc configurations or
additional code.

2. SYSTEM OVERVIEW
We briefly show our approach by explaining how each

component of QUEPA works. As shown in Figure 2, the
logical architecture of QUEPA relies on three main compo-
nents: (a) an augmenter, which augments the result of local
queries, (b) a link repository, which keeps track of meaning-
ful relationships among data objects belonging to different
stores, and (c) a link collector, which gathers such relation-
ships. Each component is analyzed in more detail in the
following of this section.

Figure 2: Architecture of QUEPA.

QUEPA exposes a set of primitives for a programmatic
use of the augmentation construct. However, we have devel-
oped a light user interface that allows to use QUEPA via a
web browser. Figure 3 and Figure 4 show two pages of this
interface. The former allows users to submit an (augmented)
query, specifying the target database in the polystore, and
to visualize the augmented result composed of several data
objects. The latter allows users to explore the polystore, by
augmenting a single answer at a time.

Repository. QUEPA is based on a collection of relation-
ships among related data objects in the polystore. Each
database has one or many data collections (e.g., tables in
a relational database), which are identified in the polystore

2134

Figure 3: Interface for augmented search.

with a unique name. A data object is an atomic value set
that can be uniquely identified inside a data collection. As
a concrete example, tuples and JSON documents are data
objects in relational databases and document stores, respec-
tively. Each data object is represented in QUEPA with a
key-value pair, where the key is the name of the data col-
lection and the value is the (unique) identifier of the object,
used in that data collection. A relationship indicates that
two or more objects are related to each other. Relation-
ships among objects capture either an identity or a reference.
It turns out that the approach behind QUEPA is compati-
ble with every database system whose data objects can be
uniquely identified with a name and a key.

The set of all relationships in QUEPA forms an undirected
graph. The nodes of the graph represent relationships that
aim to capture identities in the polystore and are called level
0 relationships. All key-value pairs that have been found to
refer to the same conceptual object are stored in the same
node. For example, in Figure 2 we have five level 0 rela-
tionships, one of these is defined among three data objects:
the tuple with key “o32” in the inventory, the document of
the catalogue with id “d1” and the pair with key equal to
“xh6dhf” in the clearances.

References among objects are represented by connecting
with an edge the corresponding nodes of the graph. In this
case we call them level 1 relationships. Generalizing, the
level of a relationship between two data objects is the length
of the shortest path between the corresponding nodes in the
graph. For example, the object with id “c1” in the catalogue
is involved in a level 3 relationship with the object “j68d6n”
in the clearance database. Hence, the level of a relationship
can be used to measure the distance between the result of
a regular query and the data objects retrieved by the aug-
mentation. For this reason, the augmentation is done with
respect to a set of levels, as we will clarify below.

In the graph of relationships each data object of the poly-
store is represented in at most one level 0 relationship (i.e.
a key-value pair is unique over the entire graph). The graph
of relationships is currently stored in the graph database
management system Neo4j, which allows to easily manage a
high number of relationships, but we are investigating dif-
ferent solutions for its implementation.

Collector. A fundamental task in QUEPA is the iden-
tification of the meaningful relationships among data ob-
jects in the polystore. This is a long standing problem,
which is made even harder by the heterogeneity present in
a polystore. Existing techniques usually require a schema

Figure 4: Interface for augmented exploration.

alignment phase, where attributes of different schema are
matched [7], followed by a record linkage phase (also known
as entity resolution or duplicate detection), which serves to
identify those objects that represent the same entity. Unfor-
tunately, in a polystore, we cannot fully rely on state-of-the-
art approaches because of the lack of necessary information
(some of the stores are schema-less, others may not have
any metadata associated to themselves) and of the differ-
ent data models of the various systems involved. Therefore,
we have opted for a combination of different techniques in
the literature, with the goal of overcoming the limitations of
each in our framework. The relationships are found trans-
parently to the user and are progressively stored offline in
the link repository by enforcing the constraints mentioned
above. This aspect is, however, outside the scope of this
demonstration.

Augmenter. When a user submits a query Q in augmented
mode (step À in Figure 2), QUEPA first checks, via a val-
idator (step Á), whether the query involves only aggregate
functions. In this case Q is computed without augmenta-
tion. In addition, the validator can rewrite Q into Q∗ (step
Â) by just adding all the identifiers of the data objects in-
volved in the query that are not explicitly mentioned in Q,
before its execution over the target database (step Ã).

The result r of Q∗ is then processed by the augmenter that
computes the actual augmentation according to the level of
relationship with the data objects in r (step Ä). The default
is 0 (that is, an augmented search returns, for each data ob-
ject o in r, all the data objects in a level 0 relationship with
o) but, as also showed in Figure 3, the level of augmenta-
tion can be fixed by the user. In general, the augmenter is in
charge of identifying all the relationships of the given level in
the repository (step Å) and retrieving all the involved data
objects by means of suitable queries to the corresponding
databases in the polystore (step Æ). This component has to
account non-trivial algorithms for minimizing the number of
accesses to the polystore needed to generate the current aug-
mentation. Finally, the augmented answer r+ is returned to
the user (step Ç).

In case of augmented exploration, the augmenter is in
charge of retrieving and caching, in each step of the inter-
action with the user, all the data objects having either a
level 0 or a level 1 relationship with the data objects in the
current result (here the level of augmentation is transparent
to the user). This information is suitably used by the user
interface to build the output and to generate the next result
according to the request of the user.

2135

3. DEMO OUTLINE
In our demonstration we simulate the scenario of the run-

ning example in Figure 1. Specifically, we use a polystore
for the ACME company that includes a MongoDB database
for the marketing department, a MySQL database for the
sales department, a Neo4j database supporting the business
intelligence department and a shared Redis database. We
have chosen these database systems because they are widely
used within their respective category but, as previously men-
tioned, other database systems can be added to our frame-
work with limited effort.

We have used the Last.fm dataset1, included in The Mil-
lion Song Dataset, to populate the catalogue and the sim-
ilarities databases with 943.347 songs and 6.639.415 simi-
larities , respectively. The MusicBrainz web services have
been used to populate both the catalogue and the inven-
tory with roughly 100.000 albums each. For the purpose
of the demonstration, the content of these two databases
does not overlap. In the generation of the albums, we have
found many ambiguities due to different releases, special edi-
tions, etc. These ambiguities have been stored only in one
of the two databases storing the albums. We have also used
synthetic-data generators for populating the databases with
user’s profiles, products on clearance and purchases. We
have generated in this way 20.000 user profiles, 40.000 prod-
ucts on clearance, 50.000 purchases of about 200.000 single
albums sold.

We propose to the audience the following sequence of use
cases that allow a comprehensive vision of the augmented
construct and of the main functionality of QUEPA.

Scenario A: Plug-and-play. In this scenario we show
how QUEPA can be used with a very simple configuration,
which only requires to set the IP address of the underlying
DBMSs. Audience can experience in this way the ability
of QUEPA to easily collect a bunch of relationships, thus
allowing to solve augmented queries without further human
intervention. We then show more advanced configurations of
the system that allow the user to gather more relationships
and obtain a richer augmentation.

Scenario B: Bring Your Own Language (BYOL). This
demo scenario focuses on query augmentation. A participant
to the demonstration can choose the DBMS she/he is more
expert in, among those available. As a result, QUEPA shows
the structure of the chosen database so that she/he can sub-
mit meaningful queries. It is then possible to compare the
results of the query with and without augmentation. Fi-
nally, we show the different results that can be obtained by
varying the level of augmentation.

Scenario C: Augmented exploration. In this scenario,
we ask the participant to submit a query in exploratory
mode and after getting the results, we ask him/her to freely
click on the links made available by the system to retrieve
further information on that component of the result. This
interaction can proceed as long as new data is found. Dur-
ing this exploration the system keeps track of the history of
the navigation, so that the participant to the demo can go
back to the previously visited data objects (see Figure 4).

We also demonstrate the ability of QUEPA to suggest the
most promising links to follow according to the number of
data objects that can be reached from them. Suggestions

1http://labrosa.ee.columbia.edu/millionsong/lastfm

are also available without submitting a query, so that users
who are totally unaware of the content of the polystore or do
not know any of the local query languages can still interact
with the system [4, 6].

In this scenario the level of augmentation is not visible to
the user and the exploration proceeds, in each step, through
the level 0 and level 1 relationships of the data objects in
the current result.

Scenario D: Promotions of relationships. This last
scenario serves to show one of the methods for collecting re-
lationships. This procedure is currently the most involved
among those implemented, and we believe that, since it re-
quires human interaction, it can be more appealing to the
audience. It relies on a simple, yet effective, adaptive learn-
ing mechanism, based on crowdsourcing, that allows the pro-
motion of a level n relationship in the link repository to a
level m relationship (with m < n).

More specifically, when a user interaction involve an aug-
mentation, either in a search or in an exploration, she/he is
following a path in the graph of the relationships. QUEPA
keeps track of the most visited paths by the crowd. When a
path is visited more times than a threshold (which we set to
a low value for the demonstration purposes), the system con-
nects the sink with the source of that path. As an example,
in Figure 5 we have four nodes that are, supposedly, visited
in sequence many times until reaching the given threshold.
It can be concluded that this path of the graph is meaning-
ful for the users and for this reason the dashed line is added
to the link repository.

Figure 5: Promotion of relationships.

It follows that, in QUEPA, the graph of relationships
evolves over time according to the behaviour of the users
and so does the augmented result of the queries. This fea-
ture is demonstrated by showing the audience how the graph
of the relationships evolves as soon as queries are performed
and how these changes affect the augmentation process of
QUEPA.

4. REFERENCES
[1] Apache MetaModel. http://metamodel.apache.org/,

(accessed January, 2016).

[2] UnQL: Unstructured Data Query Language. http:
//www.couchbase.com/press-releases/unql-query-language,
(accessed January, 2016).

[3] P. Atzeni, F. Bugiotti, and L. Rossi. Uniform access to nosql
systems. Inf. Syst., 43:117–133, 2014.

[4] M. Buoncristiano et al. Database challenges for exploratory
computing. SIGMOD Record, 44(2):17–22, 2015.

[5] J. Duggan et al. The BigDAWG polystore system. SIGMOD
Record, 44(2):11–16, 2015.

[6] K. Morton, M. Balazinska, D. Grossman, and J. D.
Mackinlay. Support the data enthusiast: Challenges for
next-generation data-analysis systems. PVLDB,
7(6):453–456, 2014.

[7] R. Pottinger and P. A. Bernstein. Schema merging and
mapping creation for relational sources. In EDBT, pages
73–84, 2008.

[8] M. Stonebraker. The case for polystores.
http://wp.sigmod.org/?p=1629, July, 2015.

2136

http://labrosa.ee.columbia.edu/millionsong/lastfm
http://metamodel.apache.org/
http://www.couchbase.com/press-releases/unql-query-language
http://www.couchbase.com/press-releases/unql-query-language
http://wp.sigmod.org/?p=1629

