
Flexible Query Answering over Graph-modeled Data

Antonio Maccioni
Roma Tre University

maccioni@dia.uniroma3.it
(supervised by Riccardo Torlone)∗

Expected graduation date: Fall, 2015

ABSTRACT
The lack of familiarity that users have with information sys-
tems has led to different flexible methods to access data (key-
word search, faceted search, similarity search, etc.). Since
flexible query answering techniques differ from one another,
their integration in the same system is hard. Flexible query
capabilities require, in fact, ad-hoc representations of the
datasets, which often result in duplications and computa-
tional overhead. Moreover, if we want to query heteroge-
neous data sources, the problem becomes almost impossi-
ble. To address such variety in one fell swoop, we propose a
meta-approach for different kinds of flexible query answer-
ing over heterogeneous data sources. We consider structured
and semi-structured sources that can be modeled through
graph databases. To improve the platform storing the data,
we have conducted research on the representation of graph
databases. In particular, we have devised a layer that com-
presses the graph database without having to decompress it
back into the original graph before query execution.

Categories and Subject Descriptors
H.2.4 [DATABASE MANAGEMENT]: Systems -
Query processing

Keywords
Flexible queries; Keyword search; Graph database modeling;
Graph compression; Approximate graph querying

1. INTRODUCTION
The main purpose of Information Systems is to satisfy

the information need of any kind of user. This achievement
becomes more challenging when users are unaware of the
content and organization of an underlying database or when
they ignore query languages. This scenario is quite frequent,
as many data access points are directly exposed on the Web
to random users. In these cases, Information Systems rely
on flexible query answering capabilities to take away the
barriers that these non-expert users encounter when search-
ing for information. In the evaluation of flexible queries, we

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15 PhD Symposium, May 31, 2015, Melbourne, Victoria, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3529-4/15/05 ...$15.00.
http://dx.doi.org/10.1145/2744680.2744686.

want the “best” answers (usually called top-k) that might,
possibly, only match the query approximately (approximate
query answering), or we want to consider queries expressed
with lack of structural constraints (relaxed query answering).
An example of relaxed query answering is the Google-based
method of searching over the Web, where users input their
keywords of interest and the engine attempts to find the
more relevant web pages accordingly.

Since flexible query answering methods differ from one
another and traditional data integration techniques do not
apply to them, their co-existence in the same database sys-
tem is difficult. Flexible query capabilities require, in fact,
ad-hoc representations of data, which are duplicated with
respect to the dataset used for current operations. Maintain-
ing two versions of the same database is clearly an overhead
that should be avoided. Moreover, since in a typical sce-
nario, the organizations’s information is scattered on several
sources that are governed by different heterogeneous sys-
tems, the problem becomes almost impossible. Let us imag-
ine a B2B company keeping contracts in the form of unstruc-
tured data, storing customer data in a relational database
and managing the information of the provided web services
with XML documents. It turns out that in order to answer
queries like “which are the cities of the customers who pur-
chased a service of a given category during a given day”, the
informative system of the company should be re-engineered.
This scenario is common whenever users want to be able
to search multiple types of data generated by an enterprise
through a simple search interface (Enterprise Search). These
issues are emphasized with flexible answering since, in this
case, the core of the problem is the lack of information in the
query, which induces an uncertainty that brings overhead in
the process. For instance, in relational keyword search, the
uncertainty leads to an enormous number of join operations
that the RDBMS has to compute in order to generate the
answers [17]. Therefore, it is complicated for an Enterprise
Search tool (e.g., an Enterprise Search Engine such as Mi-
crosoft Azure Search, Google Search Appliance, etc.) to
support different flexible query answering capabilities. As a
matter of fact, the current implementations of flexible query
capabilities on Informative Systems are non-interoperable,
each one using an ad-hoc representation of the dataset.

To address such heterogeneity in one fell swoop, we pro-
pose a meta-approach, called FleQSy, for different kinds of
flexible query answering over semi-structured and structured
data. FleQSy pools the commons operations of answer-
ing flexible queries by adopting a high-level abstraction of

∗
Part of the work has been supervised by Daniel Abadi (Yale Uni)

27

the process. In this way, the framework FleQSy integrates
methodologically how different flexible query answering are
solved. It allows us to avoid data transformations that bring
unnecessary duplication and computational overhead.

We also model uniformly our structured and semi-
structured data using graph databases so that FleQSy has
the view of only one informative source. The framework has
been applied to solve keyword query answering over rela-
tional [8] and RDF data [5], and to solve approximate graph
matching over RDF databases [7].

Modeling our data sources with graphs, we came across
several scalability issues in the context of graph databases.
Disk-based graph databases are conceived using legacy tech-
nologies, such as those for structured data, which are clearly
not well optimized for graph data. The problem of scal-
ing queries over graphs is fundamentally harder than scaling
queries over relational data. Therefore, we relief the system’s
workload by employing a layer that compresses the database.
It enables direct querying of the compressed graph, without
having to decompress it back into the original graph before
query execution. We also introduce an approach that facil-
itates the adoption of graph databases in scenarios where
traditional databases and methodologies are predominant.
It migrates automatically data and queries from relational
to graph databases.

The remainder of the paper is organized as follows. In
Section 2, we explain the work conducted on graph data
management. In Section 3 we propose the unified approach
FleQSy to answer different forms of flexible queries over
semi-structured and structured data. Section 4 discusses
related research and Section 5 briefly sketches the results
obtained so far. Finally, Section 6 draws conclusions and
future research to follow-up the work of this thesis.

2. GRAPH DATA MANAGEMENT
Graph databases are rapidly emerging as an effective and

efficient solution to the management of very large data sets
in cases where data are naturally represented as a graph and
data accesses mainly rely on traversing this graph. Many
issues arise during the management of graph databases since
they are fundamentally more complex than other databases.
We tackle them separately in the following.

Modeling Graph Databases. The design of graph
databases is based on best practices, usually suited only
for a specific management system. We propose a model-
driven, system-independent methodology for the design of
graph databases modeled using property graphs [9]. Start-
ing from a conceptual representation of the domain of inter-
est expressed in the Entity-Relationship model, we propose
a methodology for devising a graph database in which the
data accesses for answering queries are minimized. This is
achieved by aggregating in the same node data that are likely
to occur together in query results. However, we assume that
the queries are not known upfront and we have to rely only
on the information contained in the conceptual model.

The final goal of the methodology is to produce a tem-
plate for the final graph database. Basically, there are al-
ways similar nodes in a graph database, that is, nodes that
share many attributes and are connected by the same kind
of edges. We can say that homogeneous nodes identify a
“data type”. A template describes the data types occur-
ring in a graph database and the ways they are connected.
It represents a logical schema of the graph database that

can be made transparent to the designer and to the user of
the target database. However, the database instance is not
forced to conform the template in a rigid way (i.e. graph
databases are schema-less). It is rather the initial structure
of the graph database that can be extended or refined later.
More details about this methodology can be found in [9].

Migration of Relational to Graph Databases. As
most data sources are stored in relational databases, it is
difficult to migrate them to graph databases. We pro-
pose a methodology to facilitate the transition from struc-
tured to graph databases that are modeled with property
graphs and persisted with Graph Database Management
System (GDBMS). It is a system-independent methodology
to transform a relational database into a materialized graph
database and to convert relational conjunctive queries into
path traversal queries. As for the modeling methodology,
it uses constraints defined over the relational database to
minimize the number of data accesses required by graph
queries. Existing GDBMSs provide ad-hoc importers based
on a naive approach that generates a node for each tuple
occurring in the source database and an edge for each pair
of joinable tuples, that is, tuples satisfying a foreign key.

Conversely, in our approach we aggregate values of dif-
ferent tuples in the same node to speed-up traversal opera-
tions over the target. The basic idea is to store in the same
node data values that are likely to be retrieved together in
the evaluation of queries. Intuitively, these values are those
that belong to joinable tuple. However, by just aggregating
together joinable tuples we could run the risk to invalidate
the property graph constraints. Therefore, we consider a
data aggregation strategy based on a more restrictive prop-
erty, which we call unifiability [8]. This notion guarantees a
balanced distribution of data among the nodes of the target
graph database and an efficient evaluation of queries over the
target that correspond to joins over the source. The query
translation technique first generates a graph-based struc-
ture, called query pattern, that denotes the sub-graphs of
the target graph database including the result of the query.
A query template is then translated into a path traversal
query.

Compression of Graph Databases. As the size of the
graph increases, so too does the challenge of querying it at
high performance. Unfortunately, distributed and parallel
databases are not always a scalable solution for graphs be-
cause of the low locality in the data matching the query. One
solution to improving the performance of particular types of
graph operations is to reduce the size of the original graph by
turning it into a smaller graph. These methods proved to be
effective when the queries are given in advance but are not
general enough to be adopted since we cannot reconstruct
the original graph with decompression. We noticed that the
scalability of graph pattern matching systems is limited by
the presence of high-degree nodes. In fact, most real-world
graphs follow a power-law [14], which yield a few nodes that
are connected to a large number of other nodes. We consider
high-degree, the nodes having a number of incoming edges
exceeding a given threshold τ . Query processing operations
involving high-degree nodes are extremely skewed, taking far
more time than equivalent operations on “low-degree” nodes
since they produce an explosion of the number of interme-
diate results at query time. The problem only gets worse
as the graph evolves: the degree of such nodes increases lin-

28

early or super-linearly with respect to the increase in graph
size, and new nodes become high-degree.

high-degree node

low-degree node

(a) Original graph

 compressor node

(b) Compressed graph

Figure 1: Sparsification.

We devised sparsification techniques that losslessly com-
presses the structure of the graph in order to reduce the
number of adjacencies of high-degree nodes. The main in-
tuition behind our work is that there is a large amount of
information redundancy surrounding high-degree nodes that
can be synthesized and eliminated. We can find clusters
of low-degree nodes that are connected to the same group
of high-degree nodes (e.g., in a social network, people who
like rock music tend to follow a highly overlapping group
of popular rock stars). To this end, we introduce special
nodes in the graph, that we call compressor nodes, repre-
senting common connections of clusters of related nodes to
high-degree nodes. A lot of redundant edges can, in this
way, be removed. For example, in the graph of Figure 1(a),
six low-degree nodes (in white) are connected to the same
three high-degree nodes (in red). Therefore, we can say that
there exists a general “type of node” that has outgoing edges
to this particular set of three high-degree nodes. We indi-
cate that this “type of node” exists by creating a new node
(shown in yellow on Figure 1(b)) that has outgoing edges
to this set of three high-degree nodes. Then, we remove the
edges that connect the two white nodes to this set of high-
degree nodes, and instead create a single edge from each
white node to the new yellow node. This new yellow node
is called a “compressor node”.

There are several choices for how to compute the sparsi-
fication over the entire graph. To this end we devise two
different compression strategies: a greedy sparsification that
aims at producing the highest performing query execution
plans over the compressed graph and a space-aware spar-
sification that guarantees better compression rates. These
techniques can be implemented as a layer above existing
graph database systems, so that the end-user can benefit
from this technique without requiring modifications to the
core graph database engine code. It enables the database
engine to evaluate graph pattern matching queries without
ever having to decompress the data. For space constraint,
we leave the details about the compression strategies and
the query answering algorithms to a forthcoming paper [18].

3. FLEQSY: THE UNIFIED FRAMEWORK
Logical Architecture. The high-level architecture of Fle-
QSy is in Figure 2. Many different kind of flexible queries Q
can be submitted to FleQSy through the User Interface.
Then, the Query Analyser extracts from Q the informa-
tion needed by the Query Engine for computing the top-k
answers a1, a2, . . . , ak to output. FleQSy indicates to the
user the relevance of an answer with respect to the query.
The relevance of the answers is given by a scoring function

that can take into account both the query Q and the con-
tent of the database G. However, FleQSy is independent of
a specific scoring function, and therefore different functions
can be used for different problems.

FleQSy

USER INTERFACE

QUERY ENGINE

QUERY ANALYSER

PATH-BASED VIEW

Keyword-based
query

Graph-matching
query

Similarity
query ...

Top-k
answers
a

1
, …, a

k

Figure 2: FleQSy: The Unified Framework

The framework is capable of managing several types of
data sources (in this thesis we tackle problems over relational
and RDF databases) by modeling them in a uniform way
through graphs. We access the sources taking advantage
of a Path-Based View of the graph, where paths are the
basic information unit of concern. The Path-Based View
is sometimes implemented in a virtual way, where the data
paths are only computed at run time; other times FleQSy
relies on path-based indexes to facilitate the processing [3].

Meta-approach for Query Answering. FleQSy follows
a meta-approach composed of three main phases, that is, ev-
ery problem is solved by instantiating an algorithm for each
of the phases. The three phases are explained as follows.

Pre-processing: the query Q is analysed by the Query
Analyzer to individuate the criteria that the final answers
should conform to. Such criteria are constraints that an-
swers have to satisfy. They regard both the content and the
structure of the answers. Then, we use the path-based view
to search for the data paths in G that match the criteria.
At the end of these lookups, we have all the paths P of G
that are “relevant” for Q. Let us suppose, for instance, a
keyword-based query where the constraint is the inclusions
of the input keywords in the answers. Therefore, during the
pre-processing, we find the paths matching (e.g., containing)
such keywords.

Clustering: we group together the paths of P that are
similar with respect to the criteria individuated during the
pre-processing. Each group is also called a cluster. FleQSy
assesses the relevance of the paths in P by using the same
scoring function used for the answers. The paths are ordered
inside the clusters according to the scoring function.

Building: we generate the final answers by combining, at
each run, the most relevant paths in every cluster. The
algorithms used for the building decides how to combine the
paths. In addition, we also aim at satisfying some properties
as explained in the following.

Correctness and completeness of the process are less mean-
ingful in the context of flexible query answering. We will
analyse the accuracy of the approach in terms of precision
and recall. Intuitively, we are able to find relevant answers

29

to the query since the clusters are built on top of the criteria
individuated by the pre-processing and every cluster tries to
contribute to the generation of the current answer.

Properties of FleQSy. In pursuing the definition of the
framework, we identify different challenges that represent
goals for the development of FleQSy.

Monotonicity: a ranking is monotonic if ai is more rele-
vant than ai+1. Consequently, a query answering process is
monotonic if it generates the answers following a monotonic
ranking. From a practical point of view, this means to re-
turn the best (top-k) answers in the first generated instead
of enduring to process blocks of n candidates, with n > k,
out of which they select the best k in a second time. We
believe that monotonicity is a relevant feature for flexible
query answering because, since relaxations are less selec-
tive on the database, flexible query answering intrinsically
tends to generate (much) more answers than required (i.e.
the exact and the relaxed/approximated answers). Differ-
ently than the state-of-the-art, where searching and ranking
are computed separately, FleQSy combines the generation
with a relevance assessment of partial answers. It follows
that, if query answering is monotonic, the ranking task is
needless and the time-to-result is improved. For example,
asynchronous applications such as data visualization apps
can start the rendering process before the query answering
has terminated. To guarantee the monotonicity preserving
the correctness, we rely on theoretical results [7, 6] inspired
by the Threshold Algorithm [10].

Scalability: this property concerns the ability of the algo-
rithms to handle an ever-larger size of the database without
increasing computational time according to the increase of
size. More specifically, since we deal with flexible query an-
swering problems that are mostly NP-hard, our goal is to
relax those problems in order to reach a polynomial (possi-
bly linear) time complexity of the algorithms with respect
to the size of the database. At the same time, we do not
want to decrease practical effectiveness of the process.

Distributed Implementation: this property is a specifi-
cation of Scalability. More precisely, it is intended as the
possibility to scale a problem through the execution of paral-
lel algorithms over data sources that are located on different
computer machines.

FleQSy in use: approximate graph matching. As
an example, we show how the approximate graph matching
over RDF data is solved within FleQSy. This problem be-
came relevant with the advent of linked open data initiatives,
where organizations are opening up their data using RDF.
In this context, a user should know the OWL language to
understand the organization of the data. Moreover, data do
not always conform strictly to the ontology of reference, so
that users write their queries by trial and error in order to
avoid empty results. Instead, with FleQSy we get approx-
imate answers, that is to retrieve the best sub-graphs of the
RDF dataset that best match (not necessarily in an exact
way) the input query. This is not intended as an extension of
SPARQL, but just a relaxation of the graph pattern match-
ing problem over RDF, that of course, can be expressed
through a SPARQL syntax.

In literature, the problem is solved by relaxing the
graph isomorphism problem with heuristics or indexing
sub-components of the dataset (e.g., sub-graphs, sub-trees,
paths). These methods are able to reach a polynomial time

complexity but they are still not practicable for systems ex-
posed on the Web.

In FleQSy, the pre-processing step decomposes Q in
query paths and retrieves the paths P based on a match-
ing between the final constant node (if any) of the query
paths and the last node of the data paths. The paths of P
retrieved through the same query path are grouped together
(clustering step). Again, the paths within a cluster are or-
dered according to their relevance. Note that the same path
can be inserted in different clusters, possibly with a differ-
ent relevance. In the building step, we combine the paths
coming from different clusters (i.e. picking the most relevant
ones) and we check if their intersections are compliant to the
ones in Q. If yes, the combination is an answer for Q.

4. RELATED WORK
Graph Data Management. To the best of our knowl-
edge, there is no work that tackles specifically the problems
of modeling graph databases and migrating queries from a
relational to a graph database management system. Con-
cerning the modeling, developers mainly rely on best prac-
tices and guidelines based on typical design patterns, pub-
lished by practitioners in blogs or only suited for specific
systems.

For importing data from a relational database, existing
GDBMSs are usually equipped with facilities that rely on
naive techniques in which, basically, each tuple is mapped to
a node and foreign keys are mapped to edges. This approach
however does not fully exploit the capabilities of GDBMSs
to represent graph-shaped information. Moreover, there is
no support to query translation in these systems.

The impossibility to reduce the complexity of the al-
gorithms for graph query answering (e.g., graph pattern
matching) has pushed many researchers to devise alterna-
tive solutions for improving performance. One of them is
to reduce the size of the input by transforming the orig-
inal graph into a smaller graph [11]. While most of the
these works propose lossy compression of the graph, Fan
et. al. [11] propose a lossless compression and a query pat-
tern matching answering that does not need to decompress
the data. The compression uses bisimulation equivalence
to merge into the same hyper-node many original nodes,
all sharing type and connections. In this case the queries
have to be expressed via bounded simulation rather than
graph isomorphism. These kind of queries work well on
in-memory databases but differ from queries normally em-
ployed by disk-based graph database systems. Finally, there
are other in-memory graph compressions that are adopted
for graph analysis [16].

Flexible Query Answering. FleQSy is inspired by
frameworks in the context of data modeling and data anal-
ysis. Apache MetaModel1 is a framework for the model-
ing of heterogeneous data sources. MetaModel relies on
a unified view of the underlying sources, implemented by
connectors and API queries for CRUD and SQL-like opera-
tions. UnQL2 addresses the problem of data heterogeneity
through a standardized query language for SQL and NoSQL
database systems. MetaModel and UnQL try to avoid du-
plications due to the query rewriting mechanism of the con-
nectors, but unfortunately, they do not provide features for

1
http://metamodel.eobjects.org/

2
http://unql.sqlite.org/

30

flexible query answering. The framework MapReduce offers
a high-level abstraction for solving problems of batch data
analysis through rounds of two independent and subsequent
functions, i.e. map and reduce. PowerGraph [13] is a frame-
work for graph data analysis. It proposes the GAS paradigm
that allows to specify the problems through the implementa-
tion of three functions, namely Gather, Apply, and Scatter.
In a similar way to MapReduce and GAS paradigm, FleQSy
provides a high-level abstraction for flexible query answer-
ing through one round of the pre-processing, clustering and
building functions.

To the best of our knowledge there is no approach integrat-
ing flexible query evaluation over heterogeneous data, but
existing works focus on single problems separately. In the
context of relaxed query answering, there are works that pro-
pose to search over different databases by keywords [21, 20,
15]. Kite [21] answers keyword-based search queries across
multiple relational databases. Qin et al. [20] integrate differ-
ent solution semantics to structured keyword search within
the same framework. EASE [15] computes keyword search
over indexed and graph-modeled semi-structured, structured
and unstructured data source. Unfortunately, these ap-
proaches heavily suffer from performance drawbacks [1]. We
solved the problem of structured keyword search in FleQSy
inspired by a recent trend that proposes to solve the prob-
lem beyond the traditional dichotomy of schema-based and
schema-free approaches [1].

For what concerns the monotonicity, there exist related
work focused on the searching of top-k answers [19, 12].
Klee [19] addresses top-k algorithms on a distributed envi-
ronment of peers. It proposes variations of the Threshold
Algorithm (TA) [10], where however each answer is com-
puted on the same peer. The authors in [12] proposes a
unified solution for different top-k computations, where a
set of scoring metrics are given. Our monotonic query an-
swering differs from TA because we can use non-aggregative
and non-monotonic relevance metrics and, unlike [12], we
use one metric at a time.

5. RESULTS
Graph Data Management. We implemented the tool
R2G for migrating the relational databases using the
Blueprints library3 , which is a collection of interfaces to
databases modeled through property graphs. In this way,
we could compare the performances of our strategy against
the naive strategy proposed by the most common GDBMSs.
We used the benchmark in [4] that consists on two datasets
(i.e. IMDb and Wikipedia) and 50 keyword search queries
for each dataset that we transformed in SQL with a struc-
tured keyword search tool. For each dataset, we ran the 50
queries ten times and measured the average response time.
We performed cold-cache experiments and warm-cache ex-
periments. Figure 3 shows the performance for cold-cache
experiments. In the figure, for each GDBMS we consider the
time to perform a query on the graph database generated
by using the sparse strategy (i.e. black bar) and the time
to perform the same query on the graph database generated
by using our strategy (i.e. white bar). Our methodology al-
lows each system to perform consistently better. Competi-
tors’ strategy spend much time traversing a larger number
of edges.

3
https://github.com/tinkerpop/blueprints/wiki

0	

2	

4	

6	

8	

10	

12	

Ne
o4
J	

Ar
an
go
DB
	

Infi
nit
eG
rap
h	

Or
ac
leN
oS
QL
	

Or
ien
tD
B	

Tit
an
	
 re

sp
on

se
	
 =
m
e	

(s
ec
)	

iMDb	

0	

10	

20	

30	

40	

50	

60	

Ne
o4
J	

Ar
an
go
DB
	

Infi
nit
eG
rap
h	

Or
ac
leN
oS
QL
	

Or
ien
tD
B	

Tit
an
	
 re

sp
on

se
	
 =
m
e	

(s
ec
)	

Wikipedia	

Figure 3: Path traversal: black bars refer to naive
strategy and white bars refer to our strategy

In order to test the compression layer, we developed
a graph database system prototype on PostgreSQL 9.1.
The design of our prototype is based on popular triple
stores that persist the graph in a single clustered table
with three columns s, p, o and exhaustively index this ta-
ble. We have used two directed graphs: the first is the
Twitter dataset (81,306 nodes and 1,115,532 edges) avail-
able among the SNAP datasets4 ; the second is a synthetic
dataset, that we call Barabasi (161,306 nodes and 4,800,000
edges). We have created Barabasi using a generator in-
cluded in JUNG5 (Java Universal Network/Graph Frame-
work) for random Barabasi power-law graphs. This dataset
nicely approximates directed real-world graphs, such as the
Web graph [2].

Figure 4: Results of Compression.

We sparsified, using both strategies (i.e. greedy and space-
aware) introduced in Section 2, each dataset. Furthermore,
for each of these two strategies, we compressed the dataset
multiple times, using different threshold (τ) values. Fig-
ure 4 shows the comparison between the traditional non-
compressed approach (i.e. original) and our (using graph
compressed with τ = 2500) with queries (star queries) of
different size including only high-degree nodes over Twit-
ter. It shows both cold-cache and warm-cache runs, and
two different indexing schemes on the database: indexing
where every permutation of triples is indexed and no in-
dexing where no indexing scheme is applied on the triple
store.

Although overall performance is faster when indexes can
be used to accelerate matches to query constants, the rela-
tive performance of the queries are nearly identical for this
set of experiments as for the set of experiments without in-
dexing. This is because compression and indexing are com-
plementary. Indexes help to accelerate the match of the
high-degree constants in the query, and can do so for both
compressed graphs and uncompressed graphs. This is be-
cause our compression algorithms change the structure of

4
http://snap.stanford.edu/data/

5
http://jung.sourceforge.net/

31

the graph, but do not change the fundamental representa-
tion of vertexes and edges. This allows the compressed graph
to be indexed in the same way as the original graph. How-
ever, the compressed strategies are able to maintain their
advantage over the uncompressed strategy when indexes are
used because indexes only help for first steps of query pro-
cessing, and the main advantage of the compressed strategies
is that they keep the intermediate result set and join-input
sizes small.

(a) High-degree nodes (HD) (b) HD and Variables

Figure 5: Compression with evolving graph.

We now present the results of experiments we ran in or-
der to understand how the different pattern-matching tech-
niques scale when the size of the graph increases. As the
Barabasi model simulates the evolution of a real-world net-
work [2], we measure the performance of pattern-matching
queries over Barabasi at four points during its evolution:
(1) 41,305 nodes and 1,200,000 edges, (2) 81,306 nodes and
2,400,000 edges, (3) 121,306 nodes and 3,600,000 edges, and
(4) 161,306 nodes and 4,800,000 edges. Due to the prefer-
ential attachment formation of the graph [2], the most ex-
pensive queries involve the same high-degree nodes in all the
four datasets, which allows us to compare exactly the same
queries over the evolving network. However, as the size of
graph changes, the definition of “high degree” changes along
with it. For the first intermediate point in the Barabasi
graph, we used τ = 3500; for the second: τ = 7500; for
the third: τ = 10000; for the fourth: τ = 12500. Figure 5
presents the results of our experiment obtained using the av-
erage response time of different (i.e. 9) queries for each of the
diagrams. The behaviour of queries with only high-degree
vertexes is linear with respect to the growth of the size of the
dataset. However, the slopes of the compressed graphs are
smaller, with the greedily compressed graphs the smallest.
Note that when the graph is small, the space-aware strategy
performs worse than the non-compressed strategy. This is
because the main advantage of the space-aware strategy is
compression ratio, but the effect of compression on perfor-
mance is minimal for small graphs, and not worth the extra
joins that the space-aware strategy introduces. For queries
with both high-degree vertexes and variables, the perfor-
mance of all three strategies is similar for smaller graphs,
but as the size of the graph increases, the advantages of
compression yield large improvements in performance.

Flexible Query Answering. We have instantiated Fle-
QSy on different problems. Table 1 summarizes the results
achieved (so far) with respect to theoretical and experimen-
tal results. For more details on each single problem, we
suggest to refer the specific papers [6, 9, 7].

6. CONCLUSION AND FUTURE WORK
In this paper we presented FleQSy, a novel meta-

approach to solve several flexible query answering problems
on structured and semi-structured data. We also address
few issues in the context of graph data management: mod-
eling, migration from relational databases and compression.

Problem
Theoret. Experim. Monoto- Distrib.
Time Results -nicity Implem.

Complex.
KS over

relational DBs O(|P |) O(|P |) • ◦
KS over
RDF DBs O(|P |) O(|P |) • •

Approximate
Matching over O(|P |2) O(|P |2) • ◦

RDF DBs

• Fulfilled ◦ Not fulfilled yet P = measure of database size

Table 1: Summary of results obtained with FleQSy.

We have several directions of future work. On FleQSy, we
are working on the aspects of distributability and we are
exploring a querying process where the answers are formed
with portions coming from different data sources. We are
currently investigating if graph compression is beneficial to
graph processing systems and to other types of query an-
swering (e.g., reachability queries).

7. REFERENCES
[1] A. Baid, I. Rae, J. Li, A. Doan, and J. F. Naughton. Toward

scalable keyword search over relational data. PVLDB, 2010.

[2] A.-L. Barabási and R. Albert. Emergence of scaling in random
networks. Science, 286(5439):509–512, 1999.

[3] P. Cappellari, R. De Virgilio, A. Maccioni, and M. Roantree. A
path-oriented rdf index for keyword search query processing. In
DEXA, pages 366–380, 2011.

[4] J. Coffman and A. C. Weaver. An empirical performance
evaluation of relational keyword search techniques. IEEE
Trans. Knowl. Data Eng., 26(1):30–42, 2014.

[5] R. De Virgilio and A. Maccioni. Distributed keyword search
over rdf via mapreduce. In ESWC, pages 208–223, 2014.

[6] R. De Virgilio, A. Maccioni, and P. Cappellari. A linear and
monotonic strategy to keyword search over rdf data. In ICWE,
pages 338–353, 2013.

[7] R. De Virgilio, A. Maccioni, and R. Torlone. Approximate
querying of rdf graphs via path alignment. Distributed and
Parallel Databases, pages 1–27, 2014.

[8] R. De Virgilio, A. Maccioni, and R. Torlone. Graph-driven
exploration of relational databases for efficient keyword search.
In GraphQ, pages 208–215, 2014.

[9] R. De Virgilio, A. Maccioni, and R. Torlone. Model-driven
design of graph databases. In ER, pages 172–185, 2014.

[10] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. In PODS, pages 102–113, 2001.

[11] W. Fan, J. Li, X. Wang, and Y. Wu. Query preserving graph
compression. In SIGMOD, pages 157–168, 2012.

[12] S. Ge, L. Hou U, N. Mamoulis, and D. W. Cheung. Efficient all
top-k computation - A unified solution for all top-k, reverse
top-k and top-m influential queries. IEEE Trans. Knowl. Data
Eng., 25(5):1015–1027, 2013.

[13] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
Powergraph: Distributed graph-parallel computation on natural
graphs. In OSDI, pages 17–30, 2012.

[14] J. Leskovec, J. M. Kleinberg, and C. Faloutsos. Graph
evolution: densification and shrinking diameters. TKDD, 2007.

[15] G. Li, B. C. Ooi, J. Feng, J. Wang, and L. Zhou. Ease: an
effective 3-in-1 keyword search method for unstructured,
semi-structured and structured data. In SIGMOD, 2008.

[16] Y. Lim, U. Kang, and C. Faloutsos. Slashburn: Graph
compression and mining beyond caveman communities. IEEE
Trans. Knowl. Data Eng., 26(12):3077–3089, 2014.

[17] Y. Luo, X. Lin, W. Wang, and X. Zhou. Spark: top-k keyword
query in relational databases. In SIGMOD, 2007.

[18] A. Maccioni and D. J. Abadi. Scalable pattern matching over
compressed graphs via sparsification. 2015 - [submitted].

[19] S. Michel, P. Triantafillou, and G. Weikum. Klee: A framework
for distributed top-k query algorithms. In VLDB, 2005.

[20] L. Qin, J. X. Yu, and L. Chang. Keyword search in databases:
the power of RDBMS. In SIGMOD, pages 681–694, 2009.

[21] M. Sayyadian, H. LeKhac, A. Doan, and L. Gravano. Efficient
keyword search across heterogeneous relational databases. In
ICDE, pages 346–355, 2007.

32

