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ABSTRACT

The recent interest in three dimensional graph drawing has been motivating studies on
how to extend two dimensional techniques to higher dimensions. A common 2D approach
for computing an orthogonal drawing clearly separates the task of defining the shape of the
drawing from the task of computing its coordinates. First results towards finding a three-
dimensional counterpart of this approach are presented in [11, 12], where characterizations
of orthogonal representations of paths and cycles are studied. In this note we show that the
known characterization for cycles does not immediately extend to even seemingly simple
graphs such as theta graphs. A sufficient condition for recognizing three-dimensional
orthogonal representations of theta graphs is also presented.



1 Introduction

The recent interest in three-dimensional graph drawing has been motivating studies on
how to extend two dimensional techniques to 3D space. Work in this direction includes
extensions of simulated annealing techniques, spring embedder techniques, and incremen-
tal techniques (see e.g., [5, 9, 15, 22, 23, 28]). However, while a rich body of literature is
devoted to three-dimensional orthogonal drawings (see e.g. [3, 8, 14, 16, 17, 21, 23, 29)]),
little is known on the challenging task of extending to 3D the well-known topology-shape-
metrics approach [26].

The topology-shape-metrics approach for two-dimensional space consists of three main
steps: In the first step a planar embedding of the input graph G is defined. In the
second step a two-dimensional orthogonal representation of G is computed. An orthogonal
representation is an equivalence class of orthogonal drawings of G all having the same
shape and such that no two edges intersect. It can be described by labeling each edge
(u,v) of G with a sequence of labels in the set {Fast, West, North, South}. In the third
step, the coordinates for the nodes and for the bends along the edges are found.

A key component of the two-dimensional topology-shape-metrics technique is a char-
acterization of orthogonal representations, that is the properties that must be satisfied
by the labeling in order to guarantee the existence of an orthogonal drawing where no
two edges intersect. Such a characterization can be found in the works by Vijaian and
Widgerson and by Tamassia [26, 27].

Extending to three-dimensional space the topology-shape-metrics approach implies
computing the shape and the coordinates of the drawing in two different steps. Also, a
three-dimensional counterpart of the characterization by Vijaian and Widgerson and by
Tamassia is needed. More precisely, a solution to the following problem has to be found:
Let GG be a graph whose edges are directed and labeled with a sequence of labels in the
set {Up, Down, East, West, North, South}; does a three-dimensional orthogonal drawing
of G exist such that each edge has a shape consistent with its labeling and no two edges
intersect?

This question has been addressed by Di Battista et al. [11, 13, 12] for simple classes
of graphs, namely paths and cycles. Let 7 be a path whose edges have labels in the set
{Up, Down, East, West, North, South, } and let p and ¢ be two points in 3D space. In
[11, 13] it is characterized when 7 admits an orthogonal three-dimensional drawing I" such
that: (i) T starts at p and ends at ¢, (ii) the edges of T follow the directions given by the
labeling, and (iii) no two edges of I" intersect. The result is then extended in [12], where
a characterization of three-dimensional orthogonal representations of cycles is given.

The goal of this note is to shed some more light on the above basic question. Our
results can be listed as follows.

e We show that the known characterization for cycles does not immediately extend
to even seemingly simple graphs such as theta graphs.

e We give a sufficient condition for recognizing three-dimensional orthogonal repre-
sentations of theta graphs.

e We present an algorithm that computes a three-dimensional orthogonal drawing
from an orthogonal representation of a theta graph that satisfies the above condition.



We remark that theta graphs have been studied extensively in the literature. For
example, they arise in problems concerning graph planarity (see, e.g., [6, 2, 25, 1]), graph
bandwidth (see, e.g., [20, 24, 7, 18]), and chromatic polynomials (see, e.g., [4]).

The remainder of this paper is organized as follows. In Section 2 some preliminary
definitions are given. Section 3 shows that the characterization for cycles does not im-
mediately extend to even seemingly simple graphs such as theta graphs. In Section 4
we introduce some result that are used in Section 5 to prove the sufficiency of the con-
dition for the existence of a three-dimensional orthogonal drawing from an orthogonal
representation of a theta graph.

2 Preliminaries

We assume familiarity with basic graph drawing terminology (see, e.g. [10]).

A direction label is a label in the set {U, D, E, W, N, S} specifying the directions Up,
Down, FEast, West, North, South, respectively.

Given a graph G, for each (undirected) edge e of G with endpoints u and v, we call
darts the two possible orientations (u,v) and (v, u) of edge e. A 8D shape graph v is a
labeling of the darts of G such that (i) each dart is associated with a direction label; (ii)
the two darts of the same edge have opposite labels; (iii) v contains at least one of each
oppositely directed pair of directions (truly-threedimensionality); and (iv) each node does
not have two entering darts with the same label (coherence).

In case of 3D shape paths and cycles, which have been studied in [11, 13] and [12],
respectively, an arbitrary uniform orientation for the edges can be chosen in order to
describe the 3D shape as a sequence (a circular sequence, for cycles) of labels.

A theta graph is a graph with two non adjacent nodes of degree three and all other
nodes of degree two [19]. Thus, a theta graph consists of two nodes of degree three and
three disjoint paths, of length at least two, joining them.

We will call 3D theta shape a 3D shape for a theta graph. For example, Figure 1 shows
a theta graph © and two different labelings of the darts of ©. The labeling of Figure 1.b is
a theta shape, while the labeling of Figure 1.c is not a theta shape, since two consecutive
labels have opposite direction.

In the following we will denote by p and ¢ the two degree-three nodes of a theta shape.
Also, given a shape path 7, from p to ¢, and a shape path 7, from ¢ to p, we denote by
Cy,y the shape cycle obtained by joining 7, and m,. Observe that given a theta shape,
three paths 7, 7,, and 7., and three cycles Cy ,, C; ., and Cy ., are defined.

A three dimensional orthogonal drawing of a graph is such that nodes are mapped to
grid points of an integer three dimensional grid and edges are segments along the integer
grid lines connecting the end points.

An intersection in a three dimensional orthogonal drawing is a pair of edges that
overlap in at least one point that does not correspond to a common end-node. Figure 2
shows some example.

The simplicity testing problem for a 3D shape graph v is to decide whether there exists
an orthogonal drawing I' of v such that no two edges of I" intersect and each oriented edge
satisfies the direction constraint defined by the direction labels associated with its darts.
Obviously, a graph of degree greater than six is such that all 3D shape graphs defined on
it are not simple.
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Figure 1: (a) A theta graph ©. (b) A labeling of © that is a theta shape. (c) A labeling
of © that is not a theta shape because two consecutive labels (the circled ones) have
opposite direction.

Figure 2: An orthogonal drawing showing five intersections: (e, es), (e1,eq), (€s,€3),
(e3,e4), and (eq, e5). Overlapping objects are drawn very near (for example nodes n; and
ns or edges ez and ey)

Let v be a 3D shape graph. A flat of v is 3D shape subgraph of v that is maximal
with respect to the property that its labels come from the union of two oppositely directed
pairs of directions. Observe that, any orthogonal drawing of a flat F' must consist of edges
that lie on the same axis-aligned plane. Also, the definition above extends the analogous
definitions given in [11, 13, 12].

The following lemmas will be useful in the remainder of the paper.

Lemma 1 A shape graph v that admits a three dimensional orthogonal drawing such that
no intersection occurs between two edges of the same flat is simple.

Proof: We prove the statement by construction. Namely, given a three dimensional or-
thogonal drawing I'" such that no intersection occurs between two edges of the same flat,
we define an iterative process that produces an orthogonal drawing I without intersec-
tions. Consider an intersection between two edges e; and ey that do not belong to the
same flat. We describe a technique that eliminates the intersection, without introducing



a new one. Consider a plane IT common to e; and e; and a direction d orthogonal to II.
Move one unit in the d direction all the nodes in the open half-space determined by II and
d, the end-points of e;, and the end-points of all the edges of the flat F' of e; perpendicular
to d, if any.

The obtained drawing is a 3D orthogonal drawing. In fact, the end-points of each
edge orthogonal to d may have been either both moved one unit in the d direction or
both left in their original position. Thus, in the new drawing edges orthogonal to d are
axis aligned and of the same length they had in the original drawing. None, one, or both
the end-points of each edge parallel to d may have been moved in the d direction. If
none or both end-points have been moved, then the edge has its original direction and
length. If only one end-point has been moved, then the other end-point must be in the
closed half-space determined by IT and d, where d denotes the direction opposite to d, and
thus the edge is longer than it was in the original drawing and has the same axis-aligned
direction.

The intersection has been removed. In fact, e; lays on a new plane II' parallel to II,
while edge e; has not been moved from II, since by hypothesis it does not belong to F'.
Now we show that no other intersection has been introduced. Observe that the open half-
space determined by IT and d has not been changed. Also, no intersection is introduced
in the open half-space determined by II' and d, which has been shifted towards d. The
only region that has been changed is the closed region between IT and IT'. In particular,
an intersection may lay either on IT or on IT". Consider an intersection between two edges
laying both on II. Since such edges have not been moved, such intersection was already
present in the drawing. Consider an intersection between an edge laying on II and an edge
orthogonal to II. The latter edge has an end-point on the closed half space determined by
IT and d. Since such end-point has not been moved the intersection was already present
in the drawing. Edges on IT" belong to the same flat F' of e; and by hypothesis they can
not cross each other. Consider an intersection between an edge laying on II" and an edge
orthogonal to IT". The latter edge has an end-point on the closed half space determined
by IT and d or on IT". In both cases, the intersection was already present when the edge
was on II. O

,,,,,,,,,,,,,,,,,,,,,,,

Figure 3: The removal of an intersection: (a) before the removal (b) after the splitting
operation.

By virtue of the preceding lemma, in the following sections we will neglect intersections



occurring between edges (and nodes) that do not share a flat, assuming that they could
be easily eliminated in a post processing step.

Lemma 2 Let v be a shape graph and v be a node with two incident edges e, and e,
such that ey enters v and ey leaves v with the same label X . The shape graph v is simple
if and only if the shape graph ', obtained from ~ by replacing the path composed by ey
and ey with a single edge e directed as ey and ey and with direction label X, is simple.

Proof: Suppose v is simple. Consider a simple 3D orthogonal drawing of -, replace
the two segments corresponding to edges e; and ey with a single segment. The obtained
drawing is a simple 3D orthogonal drawing of +'. Suppose 7/ is simple. Consider a simple
3D orthogonal drawing of +'. If the segment corresponding to edge e has length [ > 1,
replace it with two segments of length 1 and [ — 1, respectively. Otherwise, multiply all
coordinates by two and apply the previous strategy. The obtained drawing is a simple
3D orthogonal drawing of . O

By virtue of Lemma 2, in the following we will restrict our attention to shape graphs
that do not have nodes of degree two whose incident edges are parallel to the same axis.
A similar hypothesis has been made in [11, 13] and [12] for the case of paths and cycles
described by sequences of direction labels (that is, consecutive labels do not define the
same direction).

Lemma 3 Let v be a simple shape graph. Let e; and ey be two edges leaving node v with
orthogonal direction labels X1 and X», respectively. If the flat of e; and ey is acyclic and
no edge leaving v has direction label Y, with Y orthogonal to X, and Xs, then the shape
graph ', obtained from y by replacing ey with a path of two edges €| and € directed away
from v and with labels Y and X, respectively, is simple.

Proof: Suppose v is simple. Consider a simple 3D orthogonal drawing of . Call II the
plane common to e; and ey, F' the flat of e; perpendicular to Y, v; the node opposite to
v with respect of e, and [y the length of e;. Denote by V* the nodes of F' joined with vy
with a path in F' not containg e;. Since by hypothesis F'is acyclic v ¢ V*. Remove the
segment from v to v; corresponding to e;. Move one unit in the Y direction all the nodes
in VV* and all the nodes in the open half-space determined by II and Y. Connect v to v
with two segments of length 1 and /; and direction Y and X, respectively.

It could be easily shown that the obtained drawing is a simple 3D orthogonal drawing
of 4'. In fact, the two segments added to the drawing have direction coherent with the
labels of €| and ef. O

Given a 3D shape path or cycle described by a sequence of direction labels o such that
no adjacent labels are equal, a not necessarily consecutive subsequence 7 C o, where 7
consists of k elements, is a canonical sequence provided that:

o 1 <k <6
e the labels of 7 are distinct;
e no flat of o contains more than three labels of 7; and

e if a flat F' of o contains one or more labels of 7, then 7 N F' form a consecutive
subsequence of o.



A characterization of simple shape cycles is given in [12]:

Theorem 1 [12] A 3D shape cycle described by a sequence of direction labels o such that
no adjacent labels are equal is simple if and only if it contains a canonical sequence of
length siz.

Figures 4 and 5 show a simple shape cycle and a not simple one, respectively.

Figure 5: A not simple shape cycle that does not meet the conditions of Theorem 1.

3 A Forbidden Theta Shape

In this section we show that the simplicity of the cycles composing a theta shape does
not imply the simplicity of the theta shape itself. We use the following notation: given a
shape path 7 (say DWUNE) we will denote by 7 (DWUNE in the example) the shape
path obtained by orienting each edge in the opposite direction and changing its label with
the opposite one (DWUNE = WSDEU). Also, we will use a dot to denote a series
composition of paths (for example m; = 7 -73). Finally, when we will need to identify the
nodes between two edges of the sequence, we will insert a lower letter between the labels
corresponding to the edges (as in pWbNUaFE Dq). The same notations apply for cycles,
which are circularly ordered sequences of direction labels.



Given two distinct nodes v and w of a shape path (shape cycle, theta shape, respec-
tively) ~, we say that v is Y with respect to w, where Y € {U, D, E,W, N, S}, if in any
drawing of v, denoted II, and II, the two planes orthogonal to Y containing v and w
respectively, the two planes may be joined by a segment oriented from II,, to II, which
has direction Y. Observe that, if v is Y with respect to w, w is Y with respect to v.

The following lemmas hold:

Lemma 4 Given a shape path o connecting two points p and q, if o contains only one
(say X ) of an oppositely directed pair X,Y of direction labels, then in any drawing of o
p s Y with respect to q, or, equivalently, q s X with respect to p.

Lemma 5 Given a shape path o connecting two points p and q, if o does not contain
labels of an oppositely directed pair of direction labels, then in any drawing of o its edges
lay on the same plane.

Figure 6: A forbidden theta shape.

Theorem 2 There exists a 3D shape graph that is not simple even if all its induced cycles
are simple.

Proof:

Let © be the theta shape composed by the three paths: m = WNUED, m =
DWUNE, and 73 = NUEN (see Fig. 6). The three cycles C 2, C)3, and Cy3 defined
by © are simple. We have:

Cipo=WNUED -DWUNE =WNUEDWSDEU
Ci3=WNUED -NUEN = WNUEDSWDS
Cy3 =DWUNE - NUEN = DWUNESW DS



Each of them satisfies the hypotheses of Theorem 1. In fact, C'; » contains, for example,
the canonical sequence identified by the checked labels in the sequence W NUEDW SDEU;
(' 3 contains, for example, the canonical sequence identified by the checked labels in the
sequence WNUEDSW DS; and (5 3 contains, for example, the canonical sequence iden-

tified by the checked labels in the sequence DWUNESW DS.
Suppose for a contradiction that © is simple. Consider any orthogonal drawing I" of ©.
In order to identify some nodes we will describe the three cycles as

Cio =pWUNcUaEDgWbSa' D EU

Ci3 =pWUVNcUaEDqgSW DS

Cy3 = pDWUd' NbEgSW DS
Observe that:

1. from o’ NbEqSW DSp and from Lemma 4 it follows that in " @' is U with respect
to p.

2. from pDW¢' and from Lemma 4 it follows that ¢’ is DW with respect to p.

3. consider the two orthogonal edges e; = a'D¢’ and es = pWi'. From o' D EUpW Y
and from Lemma 5 it follows that e; and ey belong to the same flat.

4. from statements 1, 2, and 3 and from the hypothesis that © is simple, we have that
b’ must be F with respect to ¢’ and ¢'.

5. from aEDq and from Lemma 4 it follows that a is UW with respect to ¢
6. from bEqSW DSpWH Ne¢ and from Lemma 4 it follows that ¢ is D with respect to b

7. consider the two orthogonal edges €] = aDc and e, = ¢Wb. From cUaEDqWb and
from Lemma 5 it follows that e} and e}, belong to the same flat.

8. from statements 5, 6 and 7, and from hypothesis that © is simple we have that b
must be F with respect to a and ¢ in order to avoid an intersection.

9. from bSa’Dc follows that b and ¢ share the same plane orthogonal to the EW
direction.

10. from b’ NcUa follows that o' and a share the same plane orthogonal to the EW
direction.

By using 9, 10 we obtain from statement 8 that ¢’ must be E with respect to &', which
is in contradiction with statement 4. O

10



4 Triply Expanding Drawings

Let 7y, ms,...,m, be n shape paths starting from a common point p. Denote by m; the
number of edges of m;, and by e; , with h = 1,...,m;, the h-th edge of m; starting from p.

An ezpanding drawing of m,ms, ..., m, is a simple 3D orthogonal drawing for which
edges €1,m,,€2,my, - - - s €n,m, Can be replaced by arbitrarily long segments without creating
any intersection with the drawing. The bounding boxr of an expanding drawing is the
bounding box of the drawing when edges €1 ,,,€2ms,- - -, €nm, are removed.

In [11, 13] Di Battista et al. showed a sufficient condition for the existence of an
expanding drawing of two paths (doubly expanding drawing). In this section we will show
a sufficient condition for the existence of an expanding drawing of three paths (¢riply
expanding drawing).

The result of [11, 13] on doubly expanding drawing is the following:

Theorem 3 [11, 13] A shape path © with n edges admits a doubly expanding drawing if
either it consists of exactly two edges or it contains at least two flats.

A doubly expanding drawing may be built, for example, with the technique described
in the proof of Theorem 3 given in [11, 13] that here we briefly recall. Denote e;, with
1 =1,...,n, the edges of m. If n = 2 then the construction is trivial. Otherwise, since 7
contains more than one flat, there must exists an edge common to two flats. Let k£ be the
minimum index for which e is common to two flats. Draw e as a segment of length one
with the tip at the origin. Add e;, with j =k —1,...,1 in such a way that, when a new
edge is drawn, it extends farther by one in the direction opposite to the one associated
with it than any previously drawn segment. Add e;, with 7 = k+ 1,...,n in such a
way that, when a new edge is drawn, it extends farther by one in its direction than any
previously drawn segment.

Consider three paths 7, 7,, and 7, starting from a common point p. If ¢; ; and e;; are
orthogonal, denote by F; ; the flat of 7; - 7; which contains the labels associated with e; ;
and e;;. If e; 1, €,,1, and e, ; are pairwise orthogonal, p belongs to the three orthogonal
flats F,,, F, ., and F,,. If the number of edges of path m; on flat F;; is greater than
one, we say that m; has its tail on F; ;. If e, 1, €,1, and e, are pairwise orthogonal and
m; > 1 then m; has its tail on either Fj; or Fj ;. A flat F;; may host the tail of 7; and ;.
See Figure 7 for an example.

Lemma 6 Let 7, m,, and 7, be three shape paths starting from a common point p, such
that: (i) ez, ey, and e,y are pairwise orthogonal and (ii) the paths m,, m,, and T,
contain each a single flat. If the paths 7 - 7y, T - 7., and 7, - 7, consist of evactly two
edges or contain at least two flats, then m, m,, and m, admit a triply expanding drawing.

Proof: Observe that if m; = 1 for a path m;, then the other two paths m; and 7 can
not have their tails on flats F; ; and F; ; otherwise 7; - m; or 7; - m;, would consist of more
than two edges and would contain one flat only, contradicting the hypotheses. Further, if
m; > 1 and m; > 1 for two paths m; and 7, then their two tails can not lay both on the
flat F; ;, otherwise 7; - m; would consist of more than two edges and would contain one
flat only, contradicting the hypotheses. Thus, either m; > 1, for all « = z,y, 2, or m; = 1,
for all + = x,y, 2. In fact, if only one path consisted of one edge, from the considerations
above, the tails of the other two would lay both on the same flat. Further, if only two
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Figure 7: Three paths 7, m,, and 7, starting from a common point p. Paths 7, and 7,
have their tails on flat F},,, while 7, has its tail on flat F}, ,. Tails are highlighted.

T,y

paths consisted of exactly one edge, then the third one would be on the same plane with
one of them.

If m; =1, for all i = x, y, 2, then the statement is trivially true. Suppose m; > 1, for
all i = x,y, 2. We draw separately each path on a different plane and then join the three
drawings. The length of the first segment e;;, with i = x,y, 2, is one. Each path 7; is
drawn independently by adding edge e; ;, with j = 2,...,m;, in such a way that its end
point is outside the bounding box of e;;, with ¢ = 1,...,7 — 1 and ¢;;, where m; is the
path with its first edge on the plane where 7; will be drawn. By construction, two edges
belonging to the same path do not intersect. No intersection occurs between e, 1, €,1,
and e, since they are adjacent and orthogonal. No intersection occurs between e;; and
ejn, With @ # j and h > 1, since by construction e;j, is outside the bounding box of e; ;.
Intersections between e;; and e;y, with ¢ # j and h,k > 1 are removable since e;; and
e;r do not share a flat. O

Lemma 7 Let m,, m,, and 7, be three shape paths starting from a common point p, such
that: (i) ez1, ey, and e, are pairwise orthogonal, (ii) at least one path among ,, T,
and 7, contains more than one flat and, (iii) at least one among my, m,, and m, is equal
to one. If the paths 7 - my, Ty - 7., and T, - 7, consist of exactly two edges or contain at
least two flats, then m,, m,, and 7, admit a triply ezpanding drawing.

Proof: Assume, without loss of generality, that 7, has more than one flat and that
m, = 1.

Since T, - m, contains at least two flats, by Theorem 3 it is possible to build a double
expanding drawing II,, of it. Denote by B,, the bounding box of II,,, and let L,,,, be
the maximum length of a side of B,,.

Analogously, consider the drawing II,, of 7, - m, obtained as described in the proof of
Theorem 3. Choose p as the origin and scale II,, by multiplying each coordinate by 2L 4.
Add the obtained drawing to II,, in such a way that the two drawings of point p coincide,
and the two drawings of edge e, ,, overlap. We claim that the obtained drawing is a

12



triple expanding drawing. In fact, both the drawings II,, and II,, are not self-intersecting
because of Theorem 3, and the latter does not intersect B,, because of the scaling.

Finally, intersections between edge e, ,,, and e,, with £ = 1,...,m;, are removable
since they involve edges that do not share a flat (consider that 7, contains more than one
flat). O

Lemma 8 Let 7, m,, and 7, be three shape paths starting from a common point p, such
that: (i) ez1, ey1, and e, are pairwise orthogonal, (ii) at least one path among 7, T,
and m, contains more than one flat, and (iit) my, my, and m, are greater than one. If
the paths 70, - my, Tz - 75, and T, - 7, contain at least two flats, then 7y, m,, and 7w, admit
a triply expanding drawing.

Proof: We prove the statement by construction: first we draw a pair of paths, and
then we add the third one to the drawing. We rename paths 7, 7,, and 7, in 7, m9, and
73, where the index gives the order in which the paths will be drawn.

Two are the cases:

1. There exists a flat Fj; which hosts both the tails of 7; and 7;. In this case, we set
m = m;, Ty = 7j, and 73 equal to the remaining path. Note that the tail of 73 lies on
flat F), 3 (with h equal to 1 or 2) on which 7, has the edge ej,; only. See Figure 8.a
for an example.

2. Such flat does not exist. In this case, we choose m; as any path that has more than
one flat (there exists at least one by hypothesis), we choose 7, in such a way that
the tail of 7y is on the flat F} . The remaining path is 3. Note that the tail of 73
lies on a flat F55 where m9 has the edge es; only. See Figure 8.b for an example.

. Fa3 g

F23

T

™

() (b)
Figure 8: Case 1 (a) and Case 2 (b) of Lemma 8.

Since by hypothesis 77 - w5 contains at least two flats, by Theorem 3 it admits a doubly
expanding drawing. We realize such drawing as described in the proof of Theorem 3.

Starting from point p we add path 73 to the construction. First, we show that, in both
case 1 and case 2, edge e3; can be drawn arbitrarily long without creating intersections
on flats F53 and Fj3 (other intersections are removable since involve edges that do not
share a flat).

13



In case 1 the only edges of 71 - mo on Fy 3 and F} 3 are ey and e q, respectively. Since
they are adjacent and orthogonal to es;, they can not cross it.

In case 2, e3; does not intersect 7y, since on flat F5 3 7y has the edge ey only, which
is adjacent and orthogonal to e3 ;. Further, e;; does not intersect 7. In fact, let By be
the bounding box of 7, deprived of e;; and ey, (See Figure 9). Since 7 is drawn as
described by Theorem 3, applied on 77 - m, and since the way we choose m; in case 2
guarantees that there is a transition point between two flats in m; before reaching p, edge
e1,1 protrudes out of By. Since ez is outside B; its intersections with 7 may occur with
€11 or ey ,, only. Edge es; is orthogonal to e;; and adjacent to it. Thus there is no
intersection between e3; and e; ;. The intersection that may occur between ez ; and e ,,,
involves edges that do not share a flat (recall that m; contains at least two flats). Thus,
es, can not intersect any edge of ;.

€1m

13 -

Figure 9: Edge e3; does not cross edges e;,,, and ey ;.

We now add edges e3; for ¢« = 1,...,m3 to the drawing. Denote by B;, with : =
1,...,mg, the bounding box of the current drawing before the insertion of edge es; de-
prived of e;,,, and ey,,,. We add each edge e3, for i = 1,...,m3 in such a way that its
end point is placed one unit ouside B;. An intersection may occur only with edges e,
and ey ,,, which are the only two edges protruding from B; when edge e3; is added. Such
intersections involve edges that do not share a flat.

Thus, 73 may be added to the drawing without intersecting the drawing of 71 - o, and
in such a way that the last added edge es ,, could be drawn arbitrarily long. O

Lemma 9 Let 7., m,, and 7, be three shape paths starting from a common point p, such
that e, 1 and ey, have opposite direction labels. If the paths 7 - m,, 7y - 7., and T, - 7,
consist of exactly two edges or contain at least two flats, then 7y, m,, and 7, admit a triply
expanding drawing.

Proof: By hypothesis 7 - m, consists of exactly two edges or contains at least two flats.
In the latter case, there exists an edge in 7, - m, orthogonal to both e, ; and e, ;. Suppose,
without loss of generality, that such edge is in 7,, and that k£ is the smallest index for
which e, is orthogonal to both e, ; and e, ;. Call X; the direction label of e, ;.

Denote by 7, the shape graph composed by segments e, ;, with j = k,...,m,, and
paths m, and 7,. Denote by ~;, with 2+ = 1,...,k — 1, the shape graph composed by
segments e, ;, with j =k, ..., m,, segments e, 5, with h = 1,...,4, and paths 7, and 7.
Note that v, coincides with the shape graph composed by m,, m,, and .
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By Lemma 6, Lemma 7, and Lemma 8, 7y admits a triply expanding drawing. We will
iteratively apply Lemma 3 in order to obtain 3D simple orthogonal drawings of ~;, with
i=1,...,k—1. At iteration 1 e, ; can be inserted between p and e, j, since X, is different
from the direction labels of e, 1, e,1, and e, ;. At iteration ¢, with ¢ = 2,...,k — 1, e,
can be inserted between e, ; ; and e, since X; is orthogonal both to X;_; and to Xj.

If 7, - m, consists of exactly two edges, consider the doubly expanding drawing of
7, + T, constructed as described in the proof of Theorem 3. Observe that such drawing
differs from the drawing of 7, - 7, in the last added edge (e, instead of e, ;) only. Thus,
the triply expanding drawing may be obtained by adding e,; to the doubly expanding
drawing of 7, - 7. O

From Lemmas 6, 7, 8, and 9 follows:

Theorem 4 Let 7, m,, and 7, be three shape paths starting from a common point p. If
the paths 7 - m,, T, - 7,, and T, - T, consist of exactly two edges or contain at least two
flats, then 7, m,, and m, admit a triply expanding drawing.

5 A Sufficient Condition for Theta Shapes Simplicity

Let © be a theta shape composed by three shape paths m, m, and 73 from point p to
point ¢. Let e;;, with j = 1,...,m,;, the j-th edge of ;. In the following we denote by
l;; the label associated with e;; when directed according to ;. Recall that when 7; is
reversed, as in C}; = 7, - 7;, the label associated with e; ; is the opposite of [; ;, that is

Theorem 5 Let © be a theta shape composed by three shape paths wy, m, and w3 from
point p to point q. If for each m; there exist three edges €1, €;2, and e;3, such that for
each pair of paths m; and m;, 1,5 = 1,2,3, 1 # 7, the siz labels l; 1, 2, lis, L1, lj2, and
L5 form a canonical sequence 7; ; for the shape cycle C; ; = m; - 7;, then © is simple.

Proof:
The following properties hold for labels [; ;:

1. The labels [; ; of the same path are different, i.e., l; ; # iy, 1,7,k =1,2,3, j # k.
2. No two labels /; ; of the same path are opposite, i.e., l; ; # Ly, 1,7,k = 1,2,3, j # k.

3. No two labels [; ; of different paths are opposite, i.e., [, ; # m, 1,7, h,k =1,2,3,
i # h.

Property 1 follows from the canonicity of 79, 713, and 7 3. Property 2 can be proved
by contradiction. In fact, suppose that [; ; = m for some i, 7, k with 7 # k. Consider
Ci;m m # i. From the canonicity of 7;,, it follows that [, # [;; and [, # H,
h = 1,2,3. It follows that 7,,,, m,n # i contains neither the direction of [, ; nor its
opposite, contradicting its canonicity. Property 3 can be also proved by contradiction.
Suppose that [;; = m, i # h and consider Cj;, = m; - T,. Since m, is reversed, the
direction of label [; ; occurs twice in 7; .

From Properties 1, 2, and 3 it follows that, for each « = 1,2, 3, labels [;; l;» ;3 are a
permutation of the same three labels, one for each oppositely directed pair. We assume,
without loss of generality, that [;; € {U, N, E} with i,j = 1,2, 3.
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The nine edges e; j, 7,7 = 1,2, 3, bound eight connected subgraphs of the theta graph.
We call G;; the subpath of 7; from e;; to e; 11, with ¢ = 1,2,3, and 7 = 1,2. Further,
we call G, the subgraph composed by the three paths from p to e;; with ¢ = 1,2,3, and
G, the subgraph composed by the three paths from e; 3 with 7 = 1,2,3 to g.

We draw separately each one of such subgraphs, then we decide the length of the
segments e; ;, that are common to the drawings of two subgraphs, in such a way that no
unremovable intersection occurs in the drawing.

Observe that G;;, with ¢ = 1,2,3, and j = 1,2 admits a doubly expanding drawing.
In fact, since the labels associated with e; ; and e; ;11 are canonical, it follows that, if they
are not consecutive, they do not share a flat, and Theorem 3 applies. Also, observe that
Gp admits a triply expanding drawing. In fact, since, for each pair 7, j, e;; and e;; are
canonical in Cj ;, it follows that, if they are not consecutive, they do not share a flat, and
Theorem 4 applies. Analogously, Gy admits a triply expanding drawing.

We draw a doubly expanding drawing I'; ; for each G;;, with 7 = 1,2,3, and j = 1,2
as described in the proof of Theorem 3. Let L be the maximum length of a side of a
bounding box of the drawings obtained above. We draw a triply expanding drawing ',
of G, and a triply expanding drawing I'; of G, as described in Theorem 4.

Now we show how to set the lengths A; ;, 7,7 = 1, 2, 3, of the part of each edge ¢; ; that
is not contained in the bounding box of any expanding drawing, since the actual lengths
of the edges can be easily computed from it.

Denote by B, By, and B;;, with ¢ = 1,2,3 and j = 1,2, the bounding boxes of T'p,
I'y, and T'; j, respectively. Since edges e; 1, with ¢ = 1,2, 3, have labels in {U, N, E'}, there
are three pairwise orthogonal sides of B, from which edges e;; may come out. Denote
by vp, the only point common to these sides. Denote by vp, the point common to the
analogous sides of B,. Place the drawings I', and I'; in such a way that vp, has coordinates
(=2L —1,-2L —1,-2L — 1) and vp, has coordinates (2L 4+ 1,2L + 1,2L +1).

Figure 10: The definition of §(B, e, X).

Now we show how to add the drawing of I'; ; and I'; o, for ¢ = 1,2, 3. Given a bounding
box B, an edge e protruding from it, and a direction label X orthogonal to e, we denote
by 6(B, e, X) the distance of e from the side of B in the X direction (see Figure 10). We
assign to A;;, with 7,7 = 1,2, 3, the following values.

Nii =4L+240(By, €i3,0li1) —6(Bia, €i3,li1) +0(Bia,€i2,0li1) —0(Bii,ei2,lin) (1)

Niog =4L+2+ §(Bp,ei1,lia) + 8(Byeiz, lin) — 0(Bin, i, liz) — 6(Bia, €z lia)  (2)
Nig =4L +2+40(By,ei1,li3) —0(Biy, €1, lis) +0(Biy,€iz,lisz) —0(Bia, €in, liz) (3)

16



Now we show that no intersection between edges sharing a flat has been introduced
in the drawing. By Theorems 3 and 4 no intersection occurs in each (doubly or triply)
expanding drawing.

There is no intersection between two edges of the same ;. In fact, since 0 <
§(Bij,e, X) < L, and by equations 1, 2, and 3, each )\, j, with 4, j = 1,2, 3 is at least 2L+2,
each one of B, B,, B;1, and B, is in a different octant.

Intersections between edges belonging to different paths involve edges that do not
share a flat, and thus by Lemma 5 can be removed. Indeed, suppose for a contradiction
that e, and e, are two intersecting edges belonging to two different paths m, and =,
and that e, and e, are on the same flat F'. Edges e, and e, do not belong to the same
expanding drawing, since otherwise they could not intersect.

There must exist a path 7* joining e, and e, entirely contained in F', and containing
p or ¢. In 7* there can be at most three of the edges ¢;;, with i = x,y, and j = 1,2, 3,
since otherwise there would be more than three canonical labels on the same flat for the
cycle C, 4, contradicting the hypothesis that 7, , is a canonical sequence. Since edges e; ;
in 7* are on the same flat F' and are canonical, they are necessarily adjacent, and thus if
they are consecutive, they are orthogonal with each other. If e, and e, coincide with two
edges e; ; then they can not intersect since they are parallel or adjacent and orthogonal.
Otherwise, since edges e; ; are the only ones to transition between octants then e, and e,
belong to two different octants and they can not intersect. O
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