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ABSTRACT

Several techniques have been recently proposed to automatically generate web wrappers, i.e., pro-
grams that extract data from HTML pages, and transform them into a more structured format,
typically in XML. These techniques automatically induce a wrapper from a set of sample pages
that share a common HTML template. An open issue, however, is how to collect suitable classes
of sample pages to feed the wrapper inducer. Presently, the pages are chosen manually.

In this paper, we tackle the problem of automatically discovering the main classes of pages
offered by a site by exploring only a small yet representative portion of it. We propose a model to
describe the structure of a web site as a graph: nodes are classes of pages that share a common
structure, edges represent links among instances of the page classes. Based on this model, we
have developed an algorithm that accepts the url of an entry point to a target web site, visits a
limited number of pages, and produces an accurate model of the site structure. We also report on
experiments performed on actual web sites.
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1 Introduction

A large number of web sites contain highly structured regions. The pages contained in these regions
are generated automatically, either statically or dynamically, by programs that extract the data
from a back-end database and embed them into an HTML template. As a consequence, pages
generated by the same program exhibit common structure and layout, while differ in contents.

Based on this observation, several researchers have recently proposed techniques that leverage
the structural similarities of pages from large web sites to automatically derive Web wrappers [8,
29, 3, 9, 30], i.e., programs that extract data from HTML pages, and transform them into a machine
processable format, typically in XML. These techniques take as input a small set of sample pages
exhibiting a common template; they generate as output a wrapper that can be used to extract the
data from any page that share the same structure of the input samples.

Applying automatically generated wrappers on a large scale, i.e. to the structured portion of
the Web, could anticipate some of the benefits advocated by the Semantic Web envision, because
large amounts of data exposed throughout HTML web sites could become available to applica-
tions. For example, the financial data published by several specialized web sites only in HTML,
could be constantly extracted and processed for mining purposes; data delivered on the web by
thematic communities could be extracted and integrated. Also, some recent studies illustrate that
the structured views over large web sites can improve the effectiveness and the efficiency of search
engines [19].

However, automatically building wrappers for a large number of web site poses several issues.
A first problem which significantly affects the scalability of the approaches based on wrappers is
how to collect the sample pages to feed the wrapper generation system; this corresponds to identify
clusters of structurally homogeneous sample pages; presently, sample pages are chosen manually.
Also, once a library of wrappers for a web site have been generated, we have to choose which
wrapper to apply over a target page. Finally, we need a mechanism to navigate the site in order to
reach target classes of pages; therefore, we need a model to describe the navigational paths among
the identified classes.

This paper addresses all these issues; we present a system that automatically discovers the
main classes of pages offered by a site by exploring a small yet representative portion. The system
produces a model of the site consisting of classes that are suitable for wrapping, as they exhibit
the required structural uniformity. Also, the model includes features to describe the navigational
relationships among classes of pages: given a link within a page that belongs to a certain class, the
model specifies which class of pages the link points to.

This work is done in the framework of the RoadRunner project, which aims at studying
methods and techniques for the extraction of data from the Web. However the approach we
propose can be applied even with other automatic web wrapper generators, such as [3, 8, 29, 30].

1.1 Overview

We illustrate our approach by means of an example. Consider the official FIFA 2002 world cup web
site,1 whose roughly 20,000 pages contain information about teams, players, matches, and news.
The site content is organized in a regular way; for example we find one page for each player, one
page for each team, and so on. These pages are themselves well-structured, for instance all the
player pages share the same structure and, at the intensional level, they present similar information
(the name of the player, his current club, a short biography, etc.). Similarly, all team pages share
a common structure and a common intensional information, which are different from those of the
players. Also, pages contain links to one another, in order to provide effective navigation paths

1http://fifaworldcup.yahoo.com
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that reflect semantic relationships; for example, every team page contains links to the pages of its
players.

A key observation in our approach is that links reflect the regularity of the structure. To
illustrate this property consider the web page of Figure 1, which is taken from the FIFA web site
and presents information about a national team. Observe that links are grouped in collections with
uniform layout and presentation properties; we call these groups link collections.2 Usually, links
in the same collection lead to similar pages. For example, the large table on the right side of the
page contains links to player pages; the list located in the central part of the page has links to
news pages. Also, we observe that these link collections are present in every team page. Analogous
properties hold for the pages in Figure 2, which offer statistics about teams. Every stats page has a
collection of links organized in the left most column of a large table; all these links point to player
pages.

Based on these observations, we argue that:

• it is reasonable to assume that links that share layout and presentation properties usually
point to pages that are structurally similar. In our example, in a team page, the large table
on the right contains links all pointing to player pages, while links in the central list actually
lead to news pages;

• the set of layout and presentation properties associated with the links of a page can be used
to characterize the structure of the page itself. In other words, whenever two (or more) pages
contain links that share the same layout and presentation properties, then it is likely that
the two pages share the same structure. In the FIFA example, if two pages contain a link
collection inside a large table on the right, and a collection of links inside a central list, then
we may assume that the two pages are similar in structure (they look like the team page in
Figure 1).

Our approach for discovering the structure of a web site relies on the above observations. We
have designed and implemented an algorithm that builds the structure of a web site incrementally.
The structure of a web site is modelled as a directed graph: nodes are classes of pages homoge-
neous in structure; arcs represent link collections connecting classes; every link collection is then
characterized by a source class, a destination class, and the layout and presentation properties of
the actual links it describes. Pages are described in terms of the link collections they offer, and the
similarity of a group of pages is measured with respect to these features.

The algorithm starts from an entry point, such as the home page, whose (singleton) page
class represents the initial model of the site. It then refine the model by iteratively exploring
its boundaries. The model outbound links are followed, trying to exploit the properties of link
collections. Pages reached from the same collection are assumed to form a page class; at the same
time suitable techniques are applied for handling the situations where this assumption is violated.

1.2 Paper Outline

The remainder of the paper is organized as follows. Section 2 illustrates in detail our model.
Section 3 describes the algorithm for exploring the site and building a site description. Section 4
reports the results of some experiments we have conducted over some real-life web sites. Section 5
discusses related works, and Section 6 concludes the paper.

2Link collections might be singleton.
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player pages

news pages

Figure 1: Example of HTML page: a team pages

2 Web site structure model

In this section we present our proposed model to abstract the structure of a web site, based on
the main idea that layout and presentation properties associated with links can characterize the
structure of a page.

For our purposes, a web page is represented by a subset of the root-to-link paths in the corre-
sponding DOM tree representation [1], along with the referenced URLs themselves.3 Figure 3 shows
the portion of the DOM tree which would be considered for two sample pages. We call link collection
one of such DOM root-to-link paths together with all the URLs that share that path. In our model
a page can be described exclusively through its set of link collections. According to our defini-
tion, the page p1 of Figure 3 has two link collections: HTML-TABLE-TR-TD {urlB1, urlB2}, HTML-UL-LI

{urlC1, urlC2}; and the page p2 has three link collections: HTML-TABLE-TR-TD {urlB3, urlB4, urlB2},
HTML-B {urlB1}, HTML-UL-LI {urlC2}.

We abstract the single pages by defining a page schema as a set of DOM root-to-link paths.
Given a web page, its page schema can be trivially obtained by the corresponding DOM tree consid-
ering only the set of paths that, starting from the root, lead to links. Therefore, the schemas of the

3Actually, to exploit the richness of the presentation of modern web sites, we also consider the name and value of
tag attributes. However, for the sake of simplicity, we will present examples including only elements.
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player pages

Figure 2: Examples of HTML pages: a stats pages

two sample pages in Figure 3 are: {HTML-TABLE-TR-TD, HTML-UL-LI} for p1, and { HTML-TABLE-TR-TD,

HTML-B, HTML-UL-LI} for p2.
Based on the notion of page schemas we define a page class as a collection of pages; the schema

of a page class is given by the union of the individual page schemas, i.e. by the union of the
root-to-link paths of the pages participating the collection. The page class that includes the two
sample pages of Figure 3, would then have the following schema: {HTML-TABLE-TR-TD, HTML-UL-LI,

HTML-B}.
Intuitively, we expect that the page schemas for a set of structurally similar pages overlap

largely, and thus the resulting class schema is not going to be much larger than the individual page
schemas.

So far we have discussed the modelling of pages. Now we extend the model considering links.
Given a page class C1 and one of its DOM root-to-link path path, consider the link collections of
the web pages in C1 associated with path; we say that there exists a class link L between C1 and
the page class C2 if there are links in the link collections associated with path that point to pages
in C2. Also, we say that path is the path of L.

A site model is a graph whose nodes are page classes, and whose directed arcs are class links.
The notion of class link is illustrated in Figure 4. Pages p1 and p2 are grouped together into

a page class CA, and pages p3 and p4 are members of a different page class CB. Since the link
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Figure 3: Sample pages

collections in CA with path HTML-TABLE-TR-TD contain links that refer to pages in CB, there
exists a class link from CA to CB, and HTML-TABLE-TR-TD is its path.

Page p3 (urlB1)
HTML-TABLE-TR-TD-TABLE-TR-TD {urlK1, urlH1}
HTML-DIV-SPAN , {urlC1 urlC2}

Page p4 (urlB2)
HTML-TABLE-TR-TD-TABLE-TR-TD {urlH1}
HTML-DIV-SPAN {urlC2, urlC3}

Page-class CA (p1, p2)
HTML-UL-LI
HTML-TABLE-TR-TD 
HTML-B

Page-class CB (p3, p4)
HTML-TABLE-TR-TD-TABLE-TR-TD
HTML-DIV-SPAN

Page p1 (urlA1):
HTML-TABLE-TR-TD {urlB1, urlB2}
HTML-UL-LI {urlC1, urlC2}

Page p2 (urlA2): 
HTML-TABLE-TR-TD {urlB3, urlB4, urlB2}
HTML-B {urlB1}
HTML-UL-LI {urlC2}

Figure 4: A class link

It is worth noting that a site model can actually describe the navigation among the classes. To
illustrate this, consider the model in Figure 4: it says that for every page belonging to class CA,
the links having HTML-TABLE-TR-TD as path lead to pages in CB.

Intuitively, a desirable model of the site structure is one in which classes represent a useful
partition of the pages, such that pages in the same class are structurally homogeneous. In the next
section, we address the issue of building a site-model by exploring only a fraction of the web site.

3 Site-Model Generation Algorithm

We have designed an algorithm that builds the site model incrementally, while crawling the site.
The quality of the site model is evaluated with an information-theoretical approach based on the

8



P (new pages)

LC

LC

LCx

LC

LC

(a): Select and crawl

Candidate
Selection

C1

C2

Ck

(b): Candidate selection phase

Model 
Update

C1

C2

Ck

(c): Model update phase

Model i-th

Model I+1-th

Figure 5: Main steps in the model-building algorithm

Minimum Description Length Principle (MDL) [26, 16].
The entry point to the site is a given seed page, which becomes the first member of the first

class in the model. Its link collections are extracted, and pushed into a priority queue. At each
iteration, the algorithm selects a link collection from the queue, and fetches a subset of the pages
its links point to (Figure 5(a)). We follow only a subset of the potentially large set of links is
sufficient to determine the homogeneity properties of the entire collection. The subset has a given
minimal cardinality, which is a tunable parameter for the system.

The new wave of pages is then processed in two phases, as depicted in Figures 5(b) and 5(c).

• In the first phase, called candidate selection, pages are grouped according to their schemas.
Groups are then analyzed and clustered into candidate classes; every candidate contains
groups of pages having “similar” schemas. The goal of the analysis is twofold: on the one
hand, we aim at grouping together pages with identical or slightly different schemas. On the
other hand, we want to reveal heterogeneous link collections, such as those serving as menus,
noting that these collections are normally characterized by links that lead to a large number
of small (possibly singleton) candidate classes, whose schemas differ visibly from each other.

• In the second phase, which we call model update, the candidate classes are used to update the
model. The goal of this phase is to determine whether each candidate class corresponds to a
new class to be added to the model, or it should be merged with an already existing class.

At the end of the second phase, the algorithm has created a refined version of the model. Finally,
the new collections of outgoing links from the wave of pages just classified are added to the priority
queue and the next collection to visit is popped from the queue. The algorithm terminates when
the queue is empty.

In the remainder of this section, we describe the two main phases of the algorithm in detail,
and the heuristics to set the priorities of the collections in the queue.

3.1 Candidate Selection Phase

The input of the candidate selection phase is a set of pages obtained by following the links of a
collection extracted from the queue. This phase partitions the input pages into a set of candidate

9



classes for the site model.
The pages are initially grouped according to their schema, obtaining a set of groups of pages

with identical schema. Note that a totally homogeneous set of pages would yield a single group,
and conversely, links collections to heterogeneous pages such as those contained in a menu, would
result in several singleton groups. In general, we aim at obtaining a small number of candidate
classes, each containing pages with identical or slightly different schemas. On account of these
differences, we must determine when two groups should be merged into one single candidate class.

The idea is to define a similarity measure for pairs of groups, and to repeatedly collapse group
pairs whose similarity is higher than a given threshold. Note that this is similar to clustering a set
of points according to their relative distance, and indeed the technique we use is a variant of the
well known K-means algorithm [12, 20].

To define similarity, we proceed as follows. Consider a reference schema S consisting of an
ordered (for example, lexicographically) set of root-to-link paths path1, path2, . . . , pathn. To each
page p, we associate a bit vector v(p) of length n, where v(p)[i] = 1 if pathi ∈ S, and 0 otherwise.

These bit vectors are used to represent the “projection” of a page schema onto a reference
schema. Consider for instance a reference schema consisting of 16 paths, and the following vectors
for two pages: [0011000111111111], and [1111111000000000]. We see that the first page contains
all paths in the schema but number 0,1,4,5, and 6 whereas the second page contains only the first
seven paths.

Note that given a reference schema, a bit vector can be uniquely associated with each group. We
define the similarity between two groups Gi and Gj as the ratio sim(Gi, Gj) = h(Gi, Gj)/l where
l is the number of paths of the schema of Gi ∪Gj and h(Gi, Gj) is the Hamming distance [17]. If
the similarity sim(Gi, Gj) is higher than a given similarity threshold st, then Gj is collapsed into
Gi and it is removed from set of groups.

The idea is to let smaller groups collapse into larger groups, which are the “attractors”, on the
rationale that groups with many members tend to be authoritative compared to groups with only
a few members. The algorithm produces a few large classes rather than a large number of smaller
classes. This is accomplished by sorting the groups by size, and performing multiple collapsing
steps between the larger and smaller group pairs.

To illustrate, consider a set of 20 pages, grouped into G1, G2 and G3, with cardinalities 10, 5
and again 5, respectively. Also, assume that the bit vectors associated with the three groups are
v1[1111111000000000], v2[0011000111111110], and v3[0011000111111111]. Initially, groups with
vectors v1 and v2 are compared: they differ in 13 bits, with distance 0.8. At threshold 0.5, the
groups are not collapsed. Then, the pair of groups with vectors v1 and v3 are compared, again
finding a distance 0.9 which is greater than the threshold. This means that the larger class does
not attract any of the smaller classes. However, the two smaller groups are then compared with
each other and collapsed into a single group, because their vectors, v2[0011000111111111] and
v3[0011000111111110] differ by only 1 bit, with distance 0.06.

The two resulting groups are represented by the two vectors [1111111000000000] (the original
vector), with cardinality 10, and the new group described by vector [0011000111111111], also with
cardinality 10. In this example, which is taken from an actual run of the system, the merging
strategy proves effective: the two original smaller groups consist of pages containing sport news,
differing for only one link collection, and hence for a single bit in their vectors.4 This accidental
difference is detected and taken into account by the collapsing step, correctly producing a single
group of news pages.

It is worth noting that the algorithm aims at collapsing large dominant groups. Whenever this
does not occur, like in the case of menus (which are characterized by small groups with different

4News from Reuters have an additional link to the web site of the agency.
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schemas), groups are kept well separated.

3.2 Model Update Phase

The candidate classes produced in the previous step must now be combined with the existing site
model, to yield a refined model. The main issue is whether the candidate classes already appear
in the model, or they do represent genuinely new classes. This decision process is modelled by
generating a set of candidate models and then choosing the best among them. This decision is
taken by following an information-theoretical approach based on the Minimum Description Length
(MDL) principle [26, 16].

Roughly speaking, the MDL principle states that the best model to describe a set of data is the
one which minimizes the sum of: (A) the length of a string of bits which encodes the model, and
(B) the length of a string of bits which encodes the data with the help of the model. The shorter
the description the better the model.

The two parts (A) and (B), which compose the MDL cost, represent model conciseness and
precision, respectively. Part (A) is the number of bits required to describe the model and is thus
related to its conciseness. Part (B) of the MDL cost captures a model’s precision: the more precise
the model, the more accurately it captures the common structure of the data it describes, with the
consequence that fewer bits are required to encode the data according to the model. Therefore, the
MDL principle implies a tradeoff between the conciseness and the precision of the model.

In our context, the data is the set of the visited pages, and the MDL principle can be used as
an effective mechanism for quantifying how well a set of web pages fits in a site model. In order
to apply the MDL principle, we have to define an encoding function specifically tailored to our
framework.

Let us consider first part (A) of the encoding, which represents the cost of the model. In our
context the model is a set of page class schemas, therefore they can be rewritten as the concatenation
of the encoding of its members. In turn, since the schema of a page class is a set of DOM root-to-link
paths, the encoding of a class schema is obtained by concatenating the encoding of its paths.

Consider for example a model consisting of two page classes M = {CA, CB}, and assume that CA

is associated with a schema having the three paths {path1, path2, path3}, and that three pages are
in D = {p1, p2, p3} such that CA = {p1} and CB = {p2, p3}. Then, enc(M) = enc(CA) · enc(CB).5

In turn, the encoding of CA can be expressed as enc(CA) = enc(path1) · enc(path2) · enc(path3).
Similarly for CB.

Part (B) of the MDL cost represents the encoding of a set of instances D, with the help of
the model M , and it is denoted enc(D|M). In our framework, the instances are the fetched
pages; as discussed in Section 2, we abstract a web page as a set of DOM root-to-link paths,
together with the urls associated with each path. Therefore we rewrite enc(D|M) in terms of
the encoding of every page p in D with the help of the class C it belongs to: enc(D|M) =
enc(p1|CA) · enc(p2|CB) · enc(p3|CB). These terms can in turn be encoded as follows. For every
path in the schema of the instance p of C, we encode either its index if that path is in C’s schema,
or directly the path if it is not. For any path, the urls are explicitly encoded. Also, we consider a
special encoding, denoted enc({}), to take into account paths that are present in the class schema
but are missing in the page schema.

Considering again the previous example, suppose we have a page p structured as follows :
p = {path1(url11, url12), path3(url31, url32, url33), path4(url41, url43)}.
Therefore, the encoding of p with the help of CA, is:

enc(p|CA) = enc(1) · enc({url11, url12}) · enc(2) · enc({}) · enc(3)·
enc({url31, url32, url33}) · enc(path4) · enc({url41, url43})

5a · b indicates the concatenation of strings a and b.
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In order to compute the cost for this encoding, we assign weights to the different type of
schema components, namely urls (cu), paths (cp), and indices (ci), along with the cost of encoding
a link whose path is not in the schema (cmiss). The cost of enc(p|C) is the weighted sum of each
component in the page.

Following our previous example, the cost of the schema of CA is 1 · cp. The cost of encoding p
according to the class CA is 3 · ci + 7 · cu + 1 · cp + 1 · cmiss.

With this MDL cost formulation, we may now describe the model updating algorithm in detail.
For each candidate class C, and for each class Ci in the site model several alternative models are
evaluated; namely, all those obtained by merging C with Ci plus a model in which C compare as
novel class. The model with the lowest MDL cost is chosen.

3.3 Navigation Heuristics

Link collections are assigned a priority based on heuristics designed to generate a high-quality model
by visiting the fewest possible pages. Heuristics may be used to pursue two contrasting goals. The
first goal is to drive the crawler towards unexplored regions in the site, and seek the relatively few
pages that are potentially representative of entire classes of pages. The resulting model is rich in
nodes and arcs, but enjoys low support because it contains few instances. The second goal is to
discover a portion of the model and then accumulate support for only that portion, by visiting
pages that belong to the same classes with high probability.

For the same number of waves (or pages) visited, the two goals differ in terms of completeness
of the model vs. the probability of finding new pages that do not fit with the model. In the first
case, the model is more complete but the probability of non-fitting pages is higher than in the
second case, where the crawling effort is spent on accumulating confidence in the model fragment.

In our algorithm, we have experimented with, and compared results for heuristics that cover
both goals. The first, called densest-first, favors support-building by assigning higher priority to
link collections that have many instances relative to the total number of outgoing links for a cluster.
The reason is that long lists in a page are likely to point to pages with similar content (perhaps
because they are generated by a program), and therefore the next wave will provide high support to
their common class. Symmetrically, the sparsest-first strategy assigns high priority to the thinner
link collections, in the hope that they may lead to new regions in the site. An extreme case is
that of menu items, which usually belong to short collections. Regardless of the strategy chosen,
collections in singleton classes are always assigned top priority.

4 Experiments

The algorithm has been implemented in a working prototype, which has been used to conduct
several experiments. To tune the algorithm parameters we have run the system against a hand-
crafted test sites with known structural properties. We then moved to two production Web sites,
namely the FIFA 2002 World Cup web site, and the Davis Cup web site.6 These sites have a
complex hypertext structure; they contain 20,000 and 30,000 pages, respectively, organized in a
small number of classes.

For each of the test sites, we have built a local mirror, then we have manually classified all
the pages.7 This hand-built classification was then used as reference model for all the experiments
described in this section.

6http://fifaworldcup.yahoo.com, and http://www.daviscup.com, respectively
7The test sites were also selected with the criteria that manual classification was driven by regularities among the

pages URLs.
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We have conducted experiments in two main directions. First, we are interested in evaluating
the quality of the final computed model. Second, we aim at tracking the quality of a model during
its generation. Experiment settings, metrics and results are discussed in the remainder of this
section.

4.1 Model Quality

We have prepared two experiments that make use of the computed model. In the first experiment
we use the model to classify pages from the target web site; in the second experiment, we use the
model to classify a navigation, i.e. a sequence of linked pages, over the site. The results of these
experiments are evaluated by means of standard metrics.

Page Class Quality The goal of this experiment is to assess the quality of the classes of the
computed model. We have therefore randomly chosen N pages from the target web site, and we
have classified them by the help of the computed model. Classification is performed as follows:
given a page p, the best class C for p is the one minimizing enc(p|C).

Navigational Quality Although our site model is a graph, the previous experiment only focuses
on the quality of page classes, i.e. graph nodes. In this second experiment, we assess the topology
of the model, considering class links as well. The idea is to navigate the site starting from a known
initial page p0, and to map the path p0 → p1 . . . → pn on the site, onto a path C0 → . . . → Cm

on the model. Recall that links in web pages are described according to their DOM root-to-link
path. Assuming that the class C0 of p0 is known (e.g. p0 is the home page), the traversal p0 → p1

corresponds to identify all the class links starting from C0 having the same DOM root-to-link path
of the link collection leading to p1. Consider the set of classes S1 reached by these class links:8

according to the model one of these is p1’s class. This process can be iterated taking the link
collection from pi to pi+1, for i = 1 . . . n. Among the set of classes Sn, we choose the best-fitting
class Ĉ for the final page. We expect that Ĉ is the class for pn.

4.1.1 Evaluation Metrics

We evaluate the results of our experiments by adopting the F-measure, which is computed in
terms of precision and recall. Let C1, C2, . . . Cn be the set of classes from the reference model, and
Ĉ1, Ĉ2, . . . , Ĉm the set of classes from the computed model. Precision and recall for a class Ĉj with
respect to a reference class Ci are defined as follows:

P (Ci, Ĉj) =
|Ci ∩ Ĉj |
|Ĉj |

R(Ci, Ĉj) =
|Ci ∩ Ĉj |
|Ci|

F-measure9 is the harmonic mean of precision and recall:

F (Ci, Ĉj) = max(
2P (Ci, Ĉj)R(Ci, Ĉj)

P (Ci, Ĉj) + R(Ci, Ĉj)
)

To compute these terms, for each of the above experiments, we organize our results in a confusion
matrix as usual: the element eij contains the count of pages from class Ci that have been assigned

8Consider that several class links may share the same source class and the same path; this is what happens, for
example, for class links that derived from a menu.

9The F-measure score is in the range [0,1]. A higher F-measure score implies a better performance. For a more in
deep introduction and motivation of the F-measure, see e.g. [24, 27, 28].
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to Ĉj . From this matrix, precision and recall metrics of a computed class Ĉi with respect to a
reference class Cj can be computed as follows:

P (Ci, Ĉj) =
eij∑m

k=1 eik
, R(Ci, Ĉj) =

eij∑n
k=1 ekj

Finally, for each correct class Ci, the F-measure of that class is computed:

Fi = maxj=1..m
2P (Ci, Ĉj)R(Ci, Ĉj)

P (Ci, Ĉj) + R(Ci, Ĉj)

We also compute the F-measure of the model, denoted F ∗, to obtain a synthetic measure:

F ∗ =
n∑

i=1

Fi · |Ci|
| ∪n

k=1 Ck|

4.1.2 Model Quality: Experimental results

We have run our prototype over both the Davis Cup and the FIFA World Cup web sites. Models
for the two sites have been obtained by visiting only about 1,000 pages (as we will discuss in the
remainder of this section this number of pages suffices).

For the page class quality experiment, we have tested the computed models against a set of
2,000 pages for each site. The test sets were generated by random sampling from the reference
classification.

The test bed for the second experiment consists of 100 randomly generated navigational paths
including 8 linked pages. Each path has been generated by randomly picking a link within a
randomly chosen link collection of the home page; this process is then iterated from the page
reached by such a link until a path of 8 pages is built.

Figures 7 and 8 report the main results. For each site we present a table summarizing the two
experiments, and the values of the F ∗. Each table contains: the name of the class, its support, i.e.
the number of pages of that class in the web site, and the computed F-measures.

First, we observe that the two values of F ∗ are very close. Overall the results indicate that in
both the experiments the most relevant classes (according to the support) are built correctly. The
results obtained for the Davis Cup web site indicate a more accurate model. We comment on this,
observing that the structure of the Davis Cup web site is simpler than that of the FIFA World Cup
web site, since it contains a larger number of pages, but a smaller number of classes.

Let us comment the main errors. In the FIFA web site, the worst values of F correspond to
a limited number of classes, namely: 2006contact, friendlies, coach, teamCountryInfo, teamHistory,
teamProfile. The first two classes have a very small support (the first one is even a singleton). The
other three classes are more interesting and the errors can be interpreted looking at the details of
the pages. In fact, the pages of classes teamCountryInfo, teamHistory, teamProfile are quite similar
according to our model; in particular they do not contain links except those common to every
page in the site. A similar observation occurs also for the coach class, whose pages are very similar
to those of players (the class of players performs better because of their larger support). Similar
argumentation can be observed for classes in the Davis site.

In the results of the navigation quality evaluation it is interesting to observe that several single-
ton classes are involved. This is due to the fact that building our path we randomly choose links;
then links that appear in all the pages of the site have a higher probability to be followed; usually
these links lead to singleton classes, such as for example, the home page class and the copyright
class. Clearly these page are reached following different paths; nevertheless, we do not observe any
remarkable error among these classes.
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4.2 Tracking Model Quality in Incremental Generation

In this experiment we aim at tracking the quality of the model during its generation, and how
quickly, in terms of number of fetched pages, the algorithm converges towards a final result.

Since during its generation the model is incomplete, and the class supports are not reliable,
standard quality measures do not apply suitably. Therefore we base the quality evaluation on the
similarity between the schema of a reference model and that of the on going computed model.

In our context schemas are sets (of paths). In order to evaluate how well the schemas of the
classes in the current computed model match with those in the reference model we adapt the
F-measure, applying it directly on the schemas.

Let σp, σC be the schemas for page p and optimal class C, respectively. We measure the extent
of overlap between σp and σC in terms of precision and recall, as R(σp, σC) =| σp ∩ σC | / | σC |
and P (σp, σC) =| σp ∩ σC | / | σp |. Then:

F (σp, σC) = 2
P (σp, σC) R(σp, σC)

P (σp, σC) + R(σp, σC)

We use F (σp, σC) as an elementary measure of similarity between a single page and a class. By
extension, we measure the similarity between a computed class Ĉ containing pages p1, . . . , pk, and
the schema of a reference class C as the average similarity over each p ∈ Ĉ:

sim(C, Ĉ) =

∑
p∈Ĉ F (σp, σC)

k

The overall similarity between the classes Ĉ1, Ĉ2, . . . , Ĉm of the current computed model, and
the classes C1, C2, . . . , Cn of the reference model, is computed as:

F =

∑n
i=1 maxĈj

{sim(Ci, Ĉj)}
n

However, observe that by proceeding from the computed classes to reference classes in the
similarity matching, the “asymmetric” use of F alone would tolerate the introduction into the
model of spurious classes that are not similar to any reference class. Also, a single comprehensive
class with a schema that trivially includes all the paths in the reference classes would receive a high
score.

A complementary function, called RevF , is introduced to remedy these shortcomings. For each
computed class, RevF finds its most similar reference class:

RevF =

∑m
j=1 maxCi{sim(Ci, Ĉj)}

m

In order to achieve a balance that rewards computed classes that are both relevant and at the
same level of granularity as the reference classes, we combine F with RevF into the harmonic
average Q:

Q = 2
F RevF

F + RevF

We use Q for tracking the quality of the model during its generation.
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4.3 Incremental Generation: Experimental Results

The main results of our experiments over the FIFA web site are summarized in Figure 9, where the
quality Q of the computed model is plotted against the number of visited pages during a run. The
main interesting result is that both densest-first and sparsest-first strategies produce a satisfactory
model after visiting only a small fraction of the site, with the former strategy performing slightly
better. At each iteration, we identify a discovery phase during which the queue fills up with a new
wave of links to follow, up to a maximum that corresponds to the model reaching some stability.
Beyond this point, the algorithm is not discovering new structure, and the time is spent to increase
the support for the existing model.

These results10 suggest that the termination condition used in our algorithm (empty queue)
may actually be too pessimistic. A more aggressive condition would look for the max in queue size,
although we have not shown that this is a sufficient condition in the general case.

5 Related work

Web site modeling for data extraction purposes

The issue of modeling the logical structure of web sites for extraction purposes has been studied in
several research projects. A pioneering approach is that proposed in the araneus project [5, 6],
where a web page is considered as an object with an identifier (the URL) and a set of attributes.
The notion of page scheme is then introduced to model sets of homogeneous pages. Attributes of a
page may have simple or complex type. Simple attributes correspond essentially to text, images or
links to other pages. Complex attributes model possibly nested collections (lists) of objects. Also,
the model includes a heterogeneous union type, which can be used to describe links pointing to a
disjunction of page-schemes. To extract data from web pages, a wrapper is associated to each page
scheme. Wrappers in araneus are built either by means of a procedural language, called Cut and
Paste [25], or adopting Minerva [25], a formalism and a tool for rapidly writing wrappers in a more
declarative fashion.

In WebOQL [4], Arocena and Mendelzon describe web data according to an object data model,
and thus propose a language (WebOQL) for extracting and querying the web. The language allows
users to pose queries in a SQL-like fashion, and includes features to specify a mapping between
data from the actual pages and the logical constructs of the underlying data model.

A more recent contribution is that of the Wiccap project [21]. In Wiccap, web data are mapped
onto a hierarchical logical structure. The focus is on the usability of the model: the goal is to map
information from a web site into a logical organization of concepts, as they would be perceived
by ordinary users. Nodes of the target structure can then contain data extracted from several
pages, integrated to compose a uniform concept. Nodes are associated with mapping rules, i.e.
primitives that extract data from the physical structure and map them onto the target model. To
ease the burden of creating the hierarchical view over a target web site, a suite of visual tools,
called Mapping Wizard, has been developed [22].

Classification of web documents

The issue of classifying HTML web pages according to their structure has been recently addressed
in [10, 13]. Both the approaches developed in [10] and [13] take as input a large set of HTML
(or XML) pages, and create clusters of pages based on properties related to the frequency and the
distribution of tags.

10As reported in [11], a similar situation is obtained running the system over a different web site.
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Bertino et al. have proposed an approach to classify XML documents. They develop a matching
algorithm for measuring the structural similarity between an XML document and a given DTD. The
algorithm compares the structure on the document against those on the DTD. Commonalities and
differences are then evaluated to compute a numerical rank that represents the structural similarity.
The matching algorithm is then exploited for the classification of XML documents against a set of
DTDs.

The use of the MDL principle [26, 16] for model selection in the web context is not new.
In [14], Garofalakis et al. address the problem of inferring a reasonable DTD from a collection of
XML documents; the MDL principle is used to choose a high quality DTD from a set of candidates
inferred DTD. A similar technique has been proposed by Hong and Clark in order to infer wrappers
for web sources [18].

Web site structure inference

In [23], Liu et al. have developed an algorithm, called SEW, for discovering the skeleton of a target
web site. The skeleton here refers to the hypertextual structure throughout the delivered contents
are organized. It is assumed that a skeleton is a hierarchical structure whose nodes are either content
pages or navigation pages. The former are those pages providing information contents; the latter
are pages containing links to content pages. The SEW algorithm aims at automatically discovering
the hierarchical organization of navigational and content pages. It relies on a combination of
several domain independent heuristics to identify the most important set of links within each page.
Compared to our approach, SEW only distinguishes two predefined classes of pages, navigational
vs. content pages, whereas we aim at classifying pages according to their structure, without any a
priori assumption about the number of classes and the exposed features.

A similar problem has been studied also by Kao et al. [19], who have developed a technique
for analyzing news web sites. The goal of their proposal is to identify, within a news web site,
pages of indexes to news, and pages containing news. An entropy based analysis is performed to
eliminate the redundancy of the hyperlinked structure, thus distilling its complexity. A companion
technique, also based on entropy analysis, eliminates redundant information, such as navigational
panels and advertisements. As the authors argue, the most interesting field of application for this
technique is that of search engines. Since their system is able to polish the link structure and the
contents of news web sites, their approach reaches higher performances than conventional methods.

Another field that is related to our research is that of focused-crawling [7]. The goal of a focused
crawler is to selectively seek out pages that are relevant to a pre-defined set of topics possibly from
many different web sites. However, our goals are different: first, in some sense, our crawler is
focused on recognizing structure rather than looking for topic-relevant pages, and second, we aim
at discovering the complete structure of one site by visiting only a small yet representative portion
of its pages.

6 Conclusions and further work

In this paper we present an algorithm to infer a model of the structure of a web site, by visiting
a small yet representative number of pages. The output model describes the structure of the site
in terms of classes of pages and links among them. The algorithm aims at producing classes whose
pages are structurally homogeneous. The structural similarity among pages is defined with respect
to their DOM trees.

The model we produce can be used for several purposes. First, for each class of pages in the
model we can generate a wrapper: the visited pages which have been grouped into one class can be
used as input samples for automatic wrapper generator systems. Once a wrapper for each class has
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been built, the model can be used to determine which wrapper has to be applied against a given
page. Also, the model can be navigated; for example, we can target the extraction of data for all
the pages that belong to a given class: the model describes the navigational paths that lead to the
pages of the target class.

We are currently applying this approach in the framework of the RoadRunner project. Com-
bining the capabilities of our RoadRunner wrapper generator [9] with the presented approach, we
have developed a web data grabber [2], that is, a system that automatically explores and extracts
informative contents from data intensive web sites.

An interesting idea we are currently exploring is that of associating semantics with the discov-
ered classes. So far, we produce anonymous classes. Pages in each class are related because of their
common structure. We have observed that in many cases, within a web site, each class is associated
with specific concepts. Techniques that aim at classifying pages by analyzing their contents like
those proposed, for example, in [15] could be complemented with our approach.
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Algorithm ComputeModel
Parameter: n maximum number of pages to download from one link collection
Parameter: st similarity threshold
Input: l0, a seed link to start off the site navigation;
Output: the site model M as a set of page classes C;
begin

Let M = ∅; // set of page classes
Let Q = {l0}; // priority queue of link collections
while (Q is not empty) {

extract the highest priority link collection lc from Q;
fetch all but no more than n pages pointed by lc into a set w;

//Candidate Class Selection
Let H = (G1, . . . , Gk) be the pages in w grouped by schema and ordered by cardinality;
while (∃i, j such that i 6= j and sim(Gi, Gj) < st) do

choose the highest index h and the lowest index k such that h 6= k and sim(Gh, Gk) < st;
collapse Gh and Gk into a new group G;
replace Gh, Gk with G in H;

end
Let S = (C1, . . . , Cg) be the resulting candidate classes in H ordered by cardinality;

//Model Update
for each C ∈ S do

consider all M ′ = (M − {C ′}) ∪ {C ∪ C ′} for any C ′ ∈ M ;
Let Mmerge be M ′ such that mdl(M ′) is minimized;
Mnew = M ∪ {C};
if (mdl(M ′) < mdl(M ′′)) M = Mmerge;//merge class
else M = Mnew; //create new class

done;
add to Q the new links collections from w;

done;
return M ;

end

Function mdl(Model M) { return the mdl cost of M as model of all pages visited; }

Figure 6: The Compute-Model algorithm
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Class Name |C| F Class Name |C| F
headtohead 8421 0.99 feedback 4 1
headtohead-info 458 1 headtohead 8421 1
interviewaudio 77 0.8 homepage 1 1
matchReport 87 0.5 matchReport 87 0.22
mediaGallery 653 0.98 newsArticle 96 0.93
newsArticle 96 0.57 photoGallery 927 0.9
newsIndex 17 1 player 8173 0.95
photoGallery 927 1 registration 3 1
player 8173 1.00 team 156 1
playerWinloss 152 1 tie 5233 1
team 156 0.87 tieResult 5164 1
teamWinloss 152 1 about 1 0.64
tie 5233 0.99 galleryArchiveIndex 1 1
tieResult 5164 0.97 contact 1 0.66
tvSchedule 22 1 faq 1 1

legal 1 0.66
terms 1 0.64

F*=0.979

F*=0.984

Page Class Quality Navigation Quality

Figure 7: Results for www.daviscup.com
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Class Name |C| F Class Name |C| F
2002preliminaries 39 1 2002photogallery 1 1
2006contact 1 0.2 2006City 12 1
calendar 1 1 2006description 12 1
classicGame 10 0.67 classicGame 10 1
classicPlayer 16 0.67 destinationAsia 2 0.66
coach 32 0.08 destinationAsiaCityOverview 20 0.85
mainSponsorRanking 8 1 destinationAsiaIndex 1 1
destinationAsiaCityOverview 20 1 destinationAsiaWelcome 3 0.66
destinationAsiaCityPhotoGallery 40 0.67 downloads 1 1
destinationAsiaDayInTheLife 28 1 goalOfCentury 1 0.5
destinationAsiaDayInTheLifeIndex 3 1 group 8 0.4
destinationAsiaVenue360 20 1 groupIndex 1 0.66
variousDescription 11 0.67 home 1 1
france98 361 0.95 match 64 1
friendlies 4 0.00 matchIndex 1 1
groupNews 8 1 matchReport 580 1
match 64 1 misc 1 0.47
matchGallery 218 0.98 news 4333 1
matchNews 63 1 newsPhoto 8068 0.8
matchReport 580 1 player 736 0.57
mediaCenter 1 1 previousWorldCupIndex 1 0.57
news 4333 0.99 privacy 1 0.63
newsPf 4320 0.79 pureFootballIndex 1 0.75
newsPhoto 8068 0.81 rimetCup 1 0.26
photoGallery 14 1 sponsor 1 1
player 736 0.89 team 32 0.92
previousWorldCupPhotoGallery 15 0.86 teamAward 1 1
pureFootballGamesInex 1 1 teamHistory 32 0.28
referee 73 1 teamPhotoGallery 326 1
stats 57 0.86 terms 1 0.37
team 32 1 tournament 1 1
teamCountryInfo 32 0.06 variousDescription 11 0.88
teamHistory 32 0.11
teamNews 32 1
teamPhotoGallery 326 1
teamProfile 32 0.08
teamsIndex 1 1
teamStats 32 1

Page Class Quality Navigation Quality

F*=0.861

F*=0.863

Figure 8: Results for fifaworldcup.yahoo.com
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Model quality vs visited pages for http://fifaworldcup.yahoo.com
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Figure 9: Quality evaluation for FIFA
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