
TRE
R O M A

DIA

Università degli Studi di Roma Tre

Dipartimento di Informatica e Automazione
Via della Vasca Navale, 79 – 00146 Roma, Italy

On Extending a Partial

Straight-Line Drawing

Maurizio Patrignani

RT-DIA-99-2005 July 2005

Dipartimento di Informatica e Automazione,
Università di Roma Tre,

Rome, Italy.
patrigna@dia.uniroma3.it

Work partially supported by European Commission - Fet Open project DELIS - Dy-
namically Evolving Large Scale Information Systems - Contract no 001907, by “Project
ALGO-NEXT: Algorithms for the Next Generation Internet and Web: Methodologies, De-
sign, and Experiments”, MIUR Programmi di Ricerca Scientifica di Rilevante Interesse
Nazionale, and by “The Multichannel Adaptive Information Systems (MAIS) Project”,
MIUR–FIRB.

ABSTRACT

In this paper we investigate the computational complexity of the following problem. Given
a planar graph in which some vertices have already been placed in the plane (i.e., a
partial embedding), place the remaining vertices to form a planar straight-line drawing of
the graph. We show that the above extensibility problem, mentioned in the 2003 paper
“Selected Open Problems in Graph Drawing” [1], is NP-complete.

2

1 Introduction

A (simple) graph G(V, E) consists of a set V of vertices and a set E of vertex pairs called
edges. A drawing of G is a mapping of each vertex v ∈ V to a distinct point of the plane
and of each edge e ∈ E to a Jordan curve connecting its end-vertices. A drawing of G is
planar if no pair of edges intersect except, possibly, at common end-vertices. A graph G
is planar if it admits a planar drawing. A straight-line drawing of G is a drawing of G
where each edge is mapped to a straight segment. Every planar graph admits a straight-
line drawing, as independently established by Steinitz and Rademacher [8], Wagner [9],
Fary [4], and Stein [7], and such a drawing can be computed in linear time.

In this paper we show that finding a straight-line planar drawing for a graph that
is already partially drawn is an NP-complete problem. This extensibility problem was
proposed in [1] and thought to be related to the problem of drawing with fixed vertex
positions, a problem that was solved by Cabello [2].

Formally, the Partial Drawing Extensibility problem can be stated as follows.

Problem: Partial Drawing Extensibility (PDE)
Instance: A planar graph G(V, E) and a mapping ψ between a subset V ′ of its

vertices and a set of distinct points of the plane.

Question: Can coordinates be assigned to the vertices in V − V ′ such that the
resulting straight-line drawing of G(V, E) is planar?

In Section 2 we show that the PDE problem is NP-hard, while in Section 3 we prove
that it is in NP. Therefore, the following theorem holds:

Theorem 1 The Partial Drawing Extensibility problem is NP-complete.

Section 4 contains our conclusions and open problems.

2 Partial Drawing Extensibility is NP-hard

In order to show the NP-hardness of the PDE problem we produce a reduction from
the Planar 3-Satisfiability (P3SAT) problem, which is strongly NP-complete [6].
P3SAT is defined as follows:

Problem: Planar 3-Satisfiability (P3SAT)
Instance: A set of clauses C1, . . . , Cm each one having three literals from a set

of Boolean variables v1, . . . , vn. A plane bipartite graph G(VA, VB, E)
where nodes in VA correspond to the variables while nodes in VB cor-
respond to the clauses (hence, |VA| = n and |VB| = m). Edges con-
nect clauses to the variables of the literals they contain. Moreover,
G(VA, VB, E) is drawn without intersections on a rectangular grid of
polynomial size in such a way that nodes in VA are arranged in a
horizontal line that is not crossed by any edge (see Fig. 1).

Question: Can truth values be assigned to the variables v1, . . . , vn such that each
clause has a true literal?

First, we describe how the PDE instance is constructed starting from a P3SAT

instance (Section 2.1). Second, we show the correctness of the construction and produce
the NP-hardness proof (Section 2.2).

3

. . . .

1

C4

C6

C7

C3

C5

C2

1v v2 v3 v4 5v vn

C

Figure 1: A planar embedding of graph G(VA, VB, E) for a P3SAT instance.

2.1 PDE Instance Construction Rules

In this section we describe how a PDE instance is constructed starting from an instance
of the P3SAT problem, consisting of the set of clauses C1, . . . , Cm, each one having three
literals from the Boolean variables v1, . . . , vn, and a drawing of the graph G(VA, VB, E).

We briefly introduce some further definitions. Let 〈G(V, E), ψ〉 be an instance of the
PDE problem and let V ′ be the domain of ψ. We call fixed vertices those in V ′, i.e., those
that have assigned coordinates, and we call free vertices those in V −V ′, whose coordinates
have to be chosen in order to obtain a planar straight-line drawing of G(V, E). The fixed
vertices and the edges between them are introduced into the PDE instance to account
for variables and clauses of the P3SAT instance as described in Sections 2.1.2 and 2.1.3,
respectively, while Section 2.1.4 describes how to add the free vertices and the remaining
edges. Section 2.1.1 introduces the basic tools that are used for the construction of the
two kinds of gadgets.

2.1.1 Basic construction tools

For the construction of the PDE instance we make use of the basic gadget depicted in
Fig. 2. The basic gadget only has fixed vertices, which form the boundary of a cham-
ber. The chamber has two openings on the bottom side, called true gate and false gate,
respectively, and labeled with a ‘T’ and an ‘F’ in Fig 2. On the top side the chamber
has an even number of openings, that we call exits. The vertices and edges near the exits
form narrow corridors pointing internally towards one of the two gates, and are called
true exits or false exits depending on which gate they point to.

It is trivial to prove the following property:

Property 1 Given the basic gadget depicted in Fig. 2, it is possible for a path p to
traverse the basic gadget from one gate to one exit while leaving only two vertices inside
the chamber only if p enters a true (false) gate and exits a true (false) exit.

In particular, the two vertices of p must be placed in the spots where dashed circles
are drawn in Fig. 2.

4

T T TF F F

FT

Figure 2: The basic gadget used to construct the instance of the PDE problem.

2.1.2 Variable gadget construction

For each variable vi of the P3SAT instance we build a variable gadget depicted in Fig. 3.
The variable gadget is composed by two basic gadgets, one of which mirrored with respect
to the horizontal axis. The two basic gadgets are glued together in such a way that their
true gates and false gates are attached together. The number of the exits of the top
(bottom) basic gadget is equal to two times the number of the edges of E that are
incident to the node of VA corresponding to vi from above (below) in the planar drawing
of G(VA, VB, E). Also, the small corridors near the exits point alternatively to the true
and to the false gate of each gadget.

α

T T T

TT F F

F F F

T F

Figure 3: The variable gadget for a variable which is attached to three clauses from above
and to two clauses from below.

5

2.1.3 Clause gadget construction

For each clause Ch = (l1 ∨ l2 ∨ l3), where l1, l2, and l3 are literals of the variables vl1 , vl2 ,
and vl3 , respectively, we build a clause gadget by using three basic gadgets as depicted
in Fig. 4. Each basic gadget corresponds to a literal li and is attached to a true and a
false exit of the variable gadget for vli with two “pipes”, called the true and false pipe,
respectively, each one bending two times before reaching the variable gadget. Also, the
exits of the three basic gadgets point to the same eight points p1, . . . , p8, while, internally,
the small corridors near the exits of the chambers point to the true gate or the false gate
in such a way that each point p1, . . . , p8 corresponds to a different combination of the
truth values of the basic gadget exits. Further, consider the truth assignment for vl1 , vl2 ,
and vl3 that does not satisfy the clause and the point pfalse corresponding to it. The
corridors pointing to pfalse are closed with an edge.

k

4
p

5
p

6
p

7
p

2
p

1
p

3
p

8β γ

FTFT

T F

to variable vj

to variable vi to variable v

p

Figure 4: The clause gadget for a clause Ch = (vi ∨ vj ∨ vk).

2.1.4 Adding free vertices

The free vertices of the PDE instance, i.e., those vertices that need to be placed while
preserving planarity, are the following. For each variable vi, we introduce one free vertex
ni,α which is adjacent to the fixed vertex of the variable gadget of vi labeled α in Fig. 3.
For each clause Ch, we introduce one free vertex nh,β,γ which is adjacent to the two fixed
vertices of the clause gadget corresponding to Ch labeled β and γ in Fig. 4. If one literal
of variable vi occurs in clause Ch, vertices ni,α and nh,β,γ are joined with a path of six
edges, that is, containing other five free vertices (see Fig. 5).

6

α

Variable vi Variable vj Variable vk

n αi, n αj,

n h,β,γ

Clause C h

α

β

αα

γ

n k,

Figure 5: The free vertices of the EE instance introduced for a clause Ch with literals of
the three variables vi, vj, and vk.

2.2 Correctness

In this section we show the correctness of the PDE instance construction and prove the
NP-hardness of the PDE problem.

Lemma 1 Given a P3SAT instance, the construction of the corresponding PDE in-
stance described in Section 2.1 can be performed in polynomial (actually linear) time.

Proof: Let m be the number of clauses and n the number of variables of the P3SAT

instance. The PDE instance has n variable gadgets and m clause gadgets. All clause
gadgets have the same number of fixed vertices. The number of fixed vertices composing
a variable gadget depends on the number of clauses which the corresponding variable
participates in. However, since each clause has three literals, the overall number of true
(false) exits of the variable gadgets is 3m. Therefore, the number of fixed vertices of
the PDE instance is linear in the size of the P3SAT instance. Finally, from Fig. 5 the
number of free vertices is equal to m + n + m(5 × 3) = 16m + n. �

Lemma 2 If a P3SAT instance admits a truth assignment such that each clause has a
true literal, the corresponding PDE instance admits a planar drawing.

Proof: Starting from the truth assignmen of the P3SAT instance, a straight-line drawing
of the corresponding PDE instance can be found as follows. Depending on the truth value
of variable vi place vertex ni,α of the variable gadget for vi on the true gate or false gate,
and let each path to a vertex nh,β,γ exit from the corresponding true or false exit leading
to clause gadget Ch. For each clause Ch with literals l1, l2, and l3, place vertex nh,β,γ

on an arbitrary point ptrue different from pfalse, and let each path to ni,α pass through
the (unblocked) corridor of the corresponding basic gadget. The obtained straight-line
drawing is planar. In fact, edges between fixed vertices do not intersect. Also, due to
Property 1, if vi is true (false), for each clause Ch containing a literal of vi, the five
free vertices between each ni,α and nh,β,γ can be placed inside the variable gadget for

7

vi, the clause gadget for Ch, and the true (false) pipe linking them, without introducing
intersections. �

Lemma 3 A P3SAT instance admits a truth assignment such that each clause has a
true literal if the corresponding PDE instance admits a planar drawing.

Proof: Suppose that the free vertices of the PDE instance can be placed in such a way
that the resulting straight-line drawing is planar. A truth assignment for the P3SAT

instance such that each clause has a true literal can be easily computed as follows. Assign
to each variable vi a true (false) value if the corresponding variable gadget has the vertex
ni,α near the true (false) gate. We claim that the truth assignment so computed is such
that each clause contains at least a true literal. In fact, consider the clause gadget of
clause Ch. Since the paths attached to nh,β,γ have five internal vertices only, and since
each pipe bends two times, the planarity of the drawing implies that nh,β,γ is placed on a
point ptrue different from pfalse and that at least one of the three paths joining at nh,β,γ

comes from a variable that has a truth assignment satisfying clause Ch. �

Theorem 2 The Partial Drawing Extensibility problem is NP-hard.

Proof: Due to Lemmas 2 and 3, a P3SAT instance admits a truth assignment such
that each clause has a true literal if and only if the corresponding PDE instance admits
a staight-line drawing. Since, starting from a P3SAT instance, the construction of the
corresponding PDE instance can be done in polynomial time (Lemma 1), the statement
follows. �

3 Partial Drawing Extensibility is in NP

To prove that the PDE problem is in NP we produce a nondeterministic Turing machine
that decides it in polynomial time. Observe that the trivial Turing machine that nonde-
terministically assigns coordinates to the free vertices in all possible ways and then checks
each obtained drawing for planarity is not guaranteed to work in polynomial time. In fact,
in order to fully explore the space of the solutions, it would be needed to assign coordi-
nates with an arbitrary precision. To guaratee polynomial time computations we need to
transform the space of the solutions into a discrete set. To this aim, in Section 3.1 we
introduce some basic computational geometry ingredients, which are used in Section 3.2
to construct a nondeterministic Turing machine that decides the PDE problem.

3.1 Equivalent Vertex Placements

In order to limit the exploration of the solution space, we aim at determining those vertex
placements that are “equivalent”, in the sense that one of them is representative of the
whole set with respect to the possibility of finding a solution.

Consider a set V of vertices with assigned coordinates and the edges between them.
Each point p of the plane that does not overlap with such vertices and edges can be
associated with the set of vertices that are visible from p, that is, that could be joined
to p with a straight segment without intersecting any other vertex or edge. Analogously,
points overlapping with vertices in V and their edges can be associated with the empty set.

8

Two points have the same visibility if the sets of vertices that are visible from them are
equal. A vertex w, adjacent to vertices w1, w2, . . . , wk ∈ V can be added to the drawing
without introducing intersections if and only if it can be identified a point p = (x, y) from
which vertices w1, w2, . . . , wk are visible. Fig. 6.a and 6.b show three vertices on the
plane and the partition of the plane induced by the visibility relation.

���
���
���
���
���
���
���

���
���
���
���
���
���
���

(a)

w
���
���
���
���

(b) (c)

1w

w2

3

Figure 6: (a) A set of three vertices V = {w1, w2, w3} on the plane, where w1 and w2 are
linked by an edge. (b) The partition of the plane induced by the visibility relationship:
black areas have visibility ∅; white areas have visibility {w1, w2, w3}; the dark gray area
has visibility {w1, w2}; light gray areas have visibility {w1, w3}; and areas filled with stipes
have visibility {w2, w3}. (c) faces of dimension two (light gray), one (dark gray), and zero
(black) of arrangement A(V).

Given two (distinct) vertices w1 and w2 on the plane, we denote by lw1,w2 their common
straight line. Let V be a set of vertices on the plane, their arrangement, denoted by A(V),
is the set of lines lwi,wj

, one for each pair of distinct vertices wi and wj of V . Without loss
of generality, we may assume that no line in A(V) is vertical, that is, each line lwi,wj

is
composed by the points p = (x, y) that satisfy y = ax+b. We say that a point p1 = (x1, y1)
is above, on, or below line l if its y coordinate is greater than, equal to, or less than ax+ b,
respectively. For each line l in A(V), a point p1 may be associated with a label in {+, 0,−}
depending on whether p1 is above, on, or below l. The position vector of p1 is a string in
{+, 0,−}|A(V)| that specifies the labels of p1 with respect to each line of A(V). Two points
are equivalent if they have the same position vector. The equivalence classes thus defined
are called the faces of arrangement A(V). Notice that faces may have dimension two, one,
or zero, and that they subdivide the plane into convex regions (without their boudaries),
segments and half lines (without their end-points) and points [3]. Also notice that, apart
from the case in which all vertices in V are collinear, each vertex corresponds to a face of
dimension zero of the arrangement. We say that an arrangement A(V) where all vertices
in V are collinear is degenerate. Degenerate arrangements are addressed separately at the
end of the section. Fig. 6.c provides an example of the faces of an arrangement of three
vertices.

Given a non-degenerate arrangement A(V), a data structure which represents each
face of A(V) and each incidence between two faces explicitely can be constructed in
O(|V |4) time by using, for example, the algorithm described in [3].

The following lemma holds:

Lemma 4 The points of the same face of a non-degenerate arrangemnt A(V) have the
same visibility.

9

Proof: The statement is proved by showing that if two points have the same position
vectors (that is, belong to the same face) they have the same visibility. Suppose by
contradiction that two points p1 and p2 have the same position vector but have not the
same visibility.

First, consider the case in which p1 and p2 belong to the same bidimensional face.
Assume, without loss of generality, that vertex w1 is not visible from p1 but it is visible
from p2. This implies that segment p1w1 intersect one vertex or edge of the drawing, while
segment p2w1 does not. Since faces are convex, the points of the segment p1p2 belong to
f . Moving from p1 to p2 along the segment p1p2 consider the last point pl such that plw1

intersects some objects of the drawing. Among such objects there is necessarily a vertex
w2 ∈ V . Thus, vertex p2 is in one half-plane of the line lw1,w2 of A(V), while vertex p1 is
in the other half-plane (or on lw1,w2 if pl = p1), contradicting the fact that p1 and p2 have
the same position vector.

Now consider the case in which p1 and p2 are two internal points of the same segment
or half line of arrangement A(V). Without loss of generality, assume that p1 and p2 lie
on line lw1,w2, where w1 and w2 are two vertices of V . Segment p1p2 does not contain
any vertex w3 ∈ V , otherwise, since vertices in V are not all collinear, there would be a
line lw3,w4, with w4 not belonging to lw1,w2, such that p1 and p2 lie on the two opposite
half-planes determined by lw3,w4, contradicting the fact that they have the same position
vector. It follows that p1 and p2 have the same visibility of the vertices of V that lie on
line lw1,w2. Therefore, we can identify a vertex w5 �∈ lw1,w2 which is visible from p2 but
not from p1 and apply the same technique used for points of a bidimensional face, that
is, move on segment p1p2 until we find a point pl between p1 and p2 that necessarily lies
on a line lw5,w6, contradicting the hypotheses. �

Due to Lemma 4, the faces of the arrangement are contained into the regions of the
plane with the same visibility (see Fig. 6.c and Fig. 6.d for an example). Also, based on
Lemma 4, each face of a non-degenerate arrangement A(V ′) can be equipped with the set
of vertices visibile from that face (which is empty if that face is a vertex or an edge).

Two non-degenerate arrangements A′(V) and A′′(V) are said to be (combinatorially)
equivalent if there is a one-to-one correspondence between their faces that preserves posi-
tion vectors and vertex placements. Observe that, since points of the same face have the
same visibility (Lemma 4) and vertex placements are preserved by the correspondence,
the corresponding faces of two equivalent arrangements have also the same visibility.

In order to determine those vertex placements that produce equivalent arrangements,
we need to further subdivide the faces of an arrangement into smaller regions, that we
call cells. The cells of arrangement A(V) are the faces of the arrangment A(V ∗), where
V ∗ is the set of faces of dimension zero of A(V). Since V ∗ contains V , faces of A(V ∗)
(i.e., cells of A(V)) are contained into faces of A(V). Also, since A(V) has O(|V |2) lines,
and since k lines may have O(k2) intersections, the cardinality of V ∗ is O(|V |4), which
implies that A(V ∗) has O(|V |8) lines and thus O(|V |16) faces (cells of A(V)).

The following lemma holds:

Lemma 5 Let A(V) be a non-degenerate arrangement. All the arrangements obtained
by adding a vertex w and placing it into the same cell c are equivalent.

Proof: The statement is trivial if cell c has dimension zero (it has a single point). Oth-
erwise, consider the two arrangements A1(V ∪{w}) and A2(V ∪{w}) obtained by adding

10

a vertex w and placing it on point p1 or p2 of the same cell c. Arrangements A1(V ∪{w})
and A2(V ∪ {w}) are obtained from A(V) by adding a line lw,wi

for each wi ∈ V . Since
p1 and p2 belong to the same cell, lines lp1,wi

and lp2,wi
intersect the same set of faces of

dimension two of arrangement A(V), and thus the obtained arrangements are equivalent.
�

Lemma 6 Let 〈G(V, E), ψ〉 be a PDE instance, V ′ be the domain of ψ, and w be a vertex
in V − V ′. All the PDE instances obtained by 〈G(V, E), ψ〉 by assigning w to the points
of a cell c of A(V ′) admit a solution or they all do not.

Proof: The statement is trivial if cell c has dimension zero. Otherwise, the statement is
proved by showing that placing vertex w on point p1 or p2 of c, yields two arrangements
A1(V ∪{w}) and A2(V ∪{w}) which are equivalent (by Lemma 5) and whose corresponding
faces have the same visibility. �

Now we consider degenerate arrangements.

Lemma 7 Let I = 〈G(V, E), ψ〉 be a PDE instance, and let V ′ be the domain of ψ.
Suppose that vertices of V ′ all lie on the same line l. Instance I admits a solution if and
only if at least one among the |V − V ′| instances Iw obtained by assigning a vertex w ∈
V − V ′ to an arbitrary point pw �∈ l does.

Proof: Suppose I admits a solution. If all vertices of V lie on l, then I also admits
a solution where an arbitrary vertex w is moved to an arbitrary point pw �∈ l, and the
statement is trivially true. Otherwise, the solution has a vertex, call it w, which is placed
in p′w �∈ l. Consider the position pw of w in instance Iw. It’s easy to find a transformation
of the plane such that (i) points of l correspond to themselves, (ii) point p′w is moved to
pw, and (iii) straight lines are preserved. This transformation yields a solution for Iw.

Conversely, suppose that Iw admits a solution for one w ∈ V − V ′. This solution is
also a solution for instance I. �

3.2 A Nondeterministic Turing Machine for PDE

The nondeterministic Turing machine TN discribed in this section searches for a solution
in a constructive way, assigning coordinates to the free vertices one at a time. At the
beginning, only the fixed vertices of the PDE instance have coordinates assigned. At each
step TN assigns coordinates to a free vertex, using nondeterminism to carefully explore
the solution space and taking advantage of the equivalent vertex placements described in
Section 3.1.

Namely, given an instance I = 〈G(V, E), ψ〉 of the PDE problem, with V ′ domain of
ψ, the Turing machine TN first checks if nodes in V ′ lie all on the same line l. If they
do, TN nondeterministically places each vertex w ∈ V − V ′ on an arbitrary point pw �∈ l.
Therefore, in the remaining part of the computation, it may be assumed that points with
assigned coordinates are not all collinear. Also, due to Lemma 7, it is assured that at
least one branch will lead to a solution if and only if I admits one.

At each step, TN constructs a data structure to explicitely represent the O(|V |16)
cells of arrangement A(W), where W is the set of vertices with assigned coordinates,
and equips them with their visibility set. Then, TN takes one vertex w in V − W and

11

nondeterministically places it into one of the O(|V |16) cells of A(W). If the chosen cell
has no visibility to all the vertices of W adjacent to w the branch of the computation
terminates, otherwise a further nondeterministic step is perfomed.

After a suitable number of steps either all the vertices in V ′ have been placed without
introducing intersections or all the branches of the nondeterministic computation were
precociously terminated. In the first case, each non-terminated branch of the computation
provides a solution to instance I. In the second case, Lemmas 6 and 7 ensure that
instance I does not admit a solution.

Now we can prove the following:

Theorem 3 The Partial Drawing Extensibility problem is in NP.

Proof: At each step, the construction of the data structure to explicitely represent the
cells of A(W), where W is the set of vertices with assigned coordinates, can be done in
O(|V |16) time [3]. It is trivial to show that cells can be equipped with visibility information
in polynomial time. The number of steps to be perfomed is linear in the number of vertices
of V . Therefore, a computation of TN takes polynomial time. �

4 Conclusions

We showed that the Partial Drawing Extensibility problem is NP-complete. For
simplicity, in the NP-hardness proof we used a reduction from the P3SAT problem pro-
ducing non-connected PDE instances. We observe that it is not difficult to modify the
construction in such a way that the resulting graph is connected. For example, edges can
be added to connect each vertex ni,α of the variable gadget for variable vi to the middle
point of each horizontal segment of the same variable gadget (see Fig. 7). Analogous
changes performed on clause gadgets will produce a connected graph.

α

T T T

TT F F

F F F

T F

Figure 7: A variable gadget with extra edges (drawn thick) added in order to produce a
connected PDE instance.

12

A similar problem to the one addressed in this paper comes up in mesh generation [5],
where the already-placed vertices are usually assumed to form a simple polygon and the
graph is assumed to have all interior faces triangles. Do these assumptions simplify the
problem?

Acknowledgements

We thank the authors of [1] for their help focusing the problem and Giuseppe Di Battista
for interesting conversations and constant encouragement.

References

[1] F. Brandenburg, D. Eppstein, M.T. Goodrich, S. Kobourov, G. Liotta, and P. Mutzel.
Selected open problems in graph drawing. In G. Liotta, editor, Graph Drawing (Proc.
GD 2003), volume 2912 of Lecture Notes Comput. Sci., pages 515–539. Springer-
Verlag, 2004.

[2] S. Cabello. Planar embeddability of the vertices of a graph using a fixed point set is
NP-hard. In Proc. 20th European Workshop on Computational Geometry, 2004.

[3] H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS Mono-
graphs on Theoretical Computer Science. Springer-Verlag, Heidelberg, West Germany,
1987.

[4] I. Fary. On straight lines representation of planar graphs. Acta Sci. Math. Szeged,
11:229–233, 1948.

[5] L.A. Freitag and P.E. Plassman. Local optimization-based untangling algorithms for
quadrilateral meshes. In Proc. 10th int. Meshing Roundtable, pages 397–406, 2001.

[6] D. Lichtenstein. Planar formulae and their uses. SIAM J. Comput., 11(2):329–343,
1982.

[7] S. K. Stein. Convex maps. Proc. Amer. Math. Soc., 2(3):464–466, 1951.

[8] E. Steinitz and H. Rademacher. Vorlesungen über die Theorie der Polyeder. Julius
Springer, Berlin, 1934.

[9] K. Wagner. Bemerkungen zum Vierfarbenproblem. Jahresbericht der Deutschen Ma-
thematiker-Vereinigung, 46:26–32, 1936.

13

