
TRE
R O M A

DIA

Università degli Studi di Roma Tre

Dipartimento di Informatica e Automazione
Via della Vasca Navale, 79 – 00146 Roma, Italy

C-Planarity of C-Connected

Clustered Graphs

Part II – Testing and Embedding

Algorithm

P. F. Cortese, G. Di Battista, F. Frati, M. Patrignani, and M. Pizzonia

RT-DIA-110-2006 June 2006

Dipartimento di Informatica e Automazione,
Università di Roma Tre,

Rome, Italy.
{cortese,gdb,frati,patrigna,pizzonia}@dia.uniroma3.it

Work partially supported by European Commission - Fet Open project DELIS - Dynam-
ically Evolving Large Scale Information Systems - Contract no 001907 and by “Project
ALGO-NEXT: Algorithms for the Next Generation Internet and Web: Methodologies, De-
sign, and Experiments”, MIUR Programmi di Ricerca Scientifica di Rilevante Interesse
Nazionale.

ABSTRACT

We present a linear time c-planarity testing and embedding algorithm for c-connected
clustered graphs. The algorithm is based on a characterization of the clustered planarity
given in a companion paper [3]. The algorithm is reasonably easy to implement, since it
exploits as building blocks simple algorithmic tools like the computation of lowest common
ancestors, of minimum and maximum spanning trees, and of bucket sorts. It also makes
use of data structures like the SPQR-trees and the BC-trees. If the test fails it gives a
structural certificate of the intrinsic reasons causing the non c-planarity.

2

1 Introduction

Testing a clustered graphs for c-planarity is a problem of unknown time complexity in
the general case [2]. However, there exist three polynomial time algorithms, discussed
below, to test the c-planarity of a c-connected clustered graph. (For basic terminology on
clustered graphs and c-planarity see [3]).

Feng, Cohen, and Eades presented in [9, 8] a quadratic time algorithm. Their algorithm
visits the inclusion tree of the clusters bottom-up, starting from the leaves. Each cluster
is tested for planarity with the constraint that the edges to other clusters stay on the
external face. If the test is positive the cluster is replaced in its parent by a “gadget”
representing all its possible embeddings. All such planarity tests are performed using
PQ-trees, whose structure is similar to the one of the adopted “gadgets”.

Lengauer [11] found a result analogous to the one in [9, 8], but in a different context.
Namely, in that case the clustered graph is specified in terms of a set of graph patterns
and in terms of their composition. The time complexity of the algorithm is linear in the
size of the input. However, such a size can be quadratic in the size of the represented
clustered graph.

Dahlhaus [4] proposed a linear time algorithm based on the following main ingredi-
ents: a decomposition of G into its biconnected and triconnected components, a weight
of each cluster proportional to its size, and on a deep characterization of the c-planar
embeddings. The testing algorithm is based on the incremental construction of a certain
planar embedding and on a final test that checks if such embedding is c-planar. The work
in [4] contains many interesting ideas and profound intuitions. However, it has also some
weak points: it is hard to find in the paper a complete algorithmic description, there is
no complete proof of correctness, and it is not clear how to perform in linear time some
of the algorithmic steps.

In this paper we present a new linear time c-planarity testing and embedding algorithm
for c-connected clustered graphs. The algorithm is based on a characterization of clustered
planarity given in a companion paper [3]. It is reasonably easy to implement, since it
exploits as building blocks simple algorithmic tools like the computation of lowest common
ancestors, of minimum and maximum spanning trees, and of bucket sorts. It also makes
use of data structures like the SPQR-trees and the BC-trees [6, 10] (both in their simple
static version). Further, if the test fails, it gives a structural certificate of the intrinsic
reasons causing the non c-planarity.

The paper is organized as follows. In Section 2 we provide basic terminology and recall
the characterization presented in [3]. In Section 3 we recast this characterization in a form
more suitable for an algorithm. In Section 4 we describe a linear time algorithm for testing
the c-planarity of c-connected clustered graphs whose underlying graph is biconnected.
In Section 5 we extend our algorithm to handle clustered graphs whose underlying graph
is simply connected.

2 Background

We assume familiarity with planarity and connectivity of graphs [7]. We also assume
familiarity with graph drawing [5]. For a survey on the definitions of clustered graphs,
c-planarity, and c-connectivity, and for a definition of SPQR-tree and of BC-tree see

3

the companion paper [3]. We only recall here a characterization of the c-planarity of
c-connected clustered graphs given in [3] and the definitions that are needed to read the
characterization.

Given a connected subgraph G′ of G, the allocation cluster of G′, denoted by ac(G′)
is the lowest common ancestor in T of the vertices of G′. Two clusters α and β of T are
comparable when they are on the same path from a leaf to the root of T . If α and β are
comparable, the operators ≺, �, and max are defined, where α � β (α ≺ β) means that α
is an ancestor (proper ancestor) of β and max(α, β) is the farthest cluster from the root.

A lowest connecting path of a virtual edge e = (u, v) of the skeleton of a node of T
is a path between u and v in pertinent(e) with maximum allocation cluster. The lowest
connecting cluster of e, denoted by lcc(e) is the allocation cluster of the lowest connecting
path of e.

Consider a skeleton of a node µ of T and a path p composed by virtual edges of the
skeleton. The lowest connecting cluster of p is the lowest common ancestor of the lowest
connecting clusters of the edges of p. We adopt the same definition of lowest connecting
cluster also for cycles and faces of skeleton(µ). Also, for technical reasons we define the
lowest connecting cluster of an external face of a skeleton as the root of the inclusion
tree T .

An embedding of skeleton(µ) (where µ is a node of T) is c-planar when any cycle c
of the edges of skeleton(µ) does not enclose an edge e of skeleton(µ) with lcc(e) ≺ lcc(c).

Given a virtual edge e = (u, v) and a c-planar embedding Γ of pertinent(e), a lowest
connecting path s of e separates pertinent(e) into two embedded subgraphs each con-
taining s. We call highest side hs(Γ, s) and lowest side ls(Γ, s) such subgraphs, where
ac(hs(Γ, s)) � ac(ls(Γ, s)). It can be shown that the value of ac(hs(Γ, s)) does not depend
on the choice of the c-planar embedding Γ and of s and we can define the highest side
cluster of e, hsc(e) = ac(pertinent(e)).

Also, the value of ac(ls(Γ, s)) does not depend on the choice of s. Hence, we can
define the lowest side cluster of Γ lsc(Γ) = ac(ls(Γ, s)) and the lowest side cluster of e,
lsc(e) = maxΓ{lsc(Γ)}. The definitions of hsc(e) and of lsc(e) hold only if pertinent(e)
is c-planar. If pertinent(e) is not c-planar we define hsc(e) = lsc(e) =⊥, where ⊥ is by
convention a proper ancestor of any cluster.

Two comparable virtual edges e1 and e2 of a skeleton of a node of T are incompat-
ible when, assuming w.l.o.g. lcc(e1) � lcc(e2), one of the following conditions hold: (i)
lcc(e1) ≺ lcc(e2) and hsc(e2) ≺ llc(e1); (ii) lcc(e1) = lcc(e2), hsc(e1) ≺ lcc(e1), and
hsc(e2) ≺ llc(e2).

Given a c-connected clustered graph C(G, T), we have an easy characterization of a
c-planar embedding for G.

Theorem 1 [3] A planar embedding Γ of a c-connected clustered graph is c-planar if and
only if every cycle c of Γ does not enclose any edge e such that ac(e) ≺ ac(c).

The characterization for biconneced graphs is as follows:

Theorem 2 [3] Let C(G, T) be a c-connected clustered graph where G is planar and
biconnected, and let T be the SPQR tree of G rooted at an edge whose allocation cluster
is the root of T . C is c-planar if and only if for each node µ of T the following conditions
are true:

4

1. If µ is an R node then the embedding of skeleton(µ) is c-planar and each edge e
of skeleton(µ) is incident to two faces f1 and f2 such that lcc(f1) � hsc(e) and
lcc(f2) � lsc(e).

2. If µ is a P node then

(a) it does not exist a set of three edges of skeleton(µ) that are pairwise incompat-
ible and

(b) there exists at most one edge e∗ of skeleton(µ) such that lsc(e∗) ≺ lcc(e∗)
and, if there exists such e∗, then for each edge e �= e∗ of skeleton(µ) we have
lcc(e) � lsc(e∗).

The following theorem completes the characterization for general clustered graphs.

Theorem 3 [3] Let C = (G, T) be a c-connected clustered graph and let B be the BC-tree
of G rooted at a block ν that contains an edge e whose allocation cluster is the root of T .
C is c-planar if and only if each block µ of B admits a c-planar embedding Γµ such that:
(i) the parent cut-vertex of µ (if any) is on the external face of Γµ and (ii) each child
cut-vertex ρ of µ (if any) is incident to a face f with lcc(f) � ac(pertinent(ρ)).

3 Encoding the Cluster Hierarchy

In this section we show how the c-planarity characterizations mentioned in the previous
section can be modified in such a way to produce conditions that are easy to check in
linear time. Observe that the characterizations provided by Theorems 1, 2 and 3 only
require to test if a cluster is an ancestor or proper ancestor of another cluster. In practice,
we only need to perform comparisons between clusters that lie on the same path from the
root to a leaf of T .

Let ψ be a function associating each node µ of T to a value ψ(µ) such that ψ(µ) > ψ(ν),
where ν is the parent of µ. We can recast the c-planarity conditions by replacing each
condition on T with comparisons between suitable values of ψ. In the following we adopt
as function ψ(µ) the depth, denoted d(µ) where the depth of the root of T is zero and
d(µ) = d(ν) + 1 if ν is the parent of µ.

Observe that the use of the depth instead of the allocation cluster allows to replace
several definitions given on the tree T with depth values. Namely, the lowest connecting
cluster lcc(e) of a virtual edge e can be replaced by its depth. We denote d(e), the value
of d(lcc(e)). Analogously, the lowest connecting cluster lcc(f) of a face f can be replaced
by its depth d(lcc(f)), denoted d(f). In a similar way we define the highest (lowest) side
depth of a virtual edge e as hsd(e) = d(hsc(e)) (lsd(e) = d(lsc(e)).

According to the above definitions, both the incompatibility of two edges and the
conditions of Theorems 2 and 3, can be restated by replacing each occurrence of ≺ and �
with < and ≤, respectively, and by replacing each occurrence of ac(·), lcc(·), hsc(·), and
lsc(·) with d(·), d(·), hsd(·), and lsd(·), respectively.

5

4 Testing and Embedding Algorithm: Biconnected

Case

In this section we describe a linear time algorithm for testing the c-planarity and com-
puting a c-planar embedding for c-connected clustered graphs whose underlying graph is
biconnected. More formally, the input of the algorithm is a c-connected clustered graph
C(G, T) such that G is biconnected and planar. The output of the algorithm is a c-planar
embedding of C or a non-c-planar triconnected component of G. The algorithm consists
of two phases that we sketch below and fully describe in the following sections.

Preprocessing. This phase consists of three steps.

SPQR-tree Decomposition. First, we compute the depth of each edge e of G.
Second, we compute an SPQR-tree T of G rooted at any edge er of depth zero.

Skeleton-Labelling. We label each non-virtual edge e of the skeletons of T with
the three labels d(e) = hsd(e) = lsd(e), which are equal to the depth of the
corresponding edge of G. Each virtual edge e is labeled with d(e) and hsd(e)
only, by performing a suitable bottom-up traversal of T .

Edges-Sorting. We sort the edges of each P node of T with respect to the value
of their depth and, secondarily, with respect to their highest side depth. The
rationale for this sort will be clear later.

Embedding-Construction. We perform a bottom-up traversal of T . We check if a
non-planarity condition is verified for the current node µ, and in this case we return
µ, which is a triconnected component of G, such that the pertinent of its children
are c-planar but pertinent(µ) is not. Otherwise, we compute a c-planar embedding
of skeleton(µ), and compute the value lsd(e) for the virtual edge e which represents
µ in the skeleton of the parent µ′ of µ. Finally, we construct the c-planar embedding
of the whole graph by means of a top-down traversal of T .

4.1 The Preprocessing Phase

The SPQR-tree Decomposition step can be performed in linear time [10]. The depth
of each edge is computed in constant time with a lowest common ancestor query performed
with the data structure in [13].

In the Skeleton-Labelling step, we perform a bottom-up traversal of T . Let µ be
the current node. Based on the values of d(e) and hsd(e) of the edges of skeleton(µ), we
compute the values of d(e′) and hsd(e′) for the virtual edge e′ which represents µ in the
skeleton of its parent µ′. The value of hsd(e′) is the minimum of the highest side depth
of the edges of µ. It is easy to see that if µ is an S-node (P-node), d(e′) is the minimum
(maximum) of the depths of the edges of µ. If µ is an R-node, the computation of d(e′)
requires a more detailed analysis of skeleton(µ).

Lemma 1 Let µ be an R-node and let MST be a maximum spanning tree of skeleton(µ),
where the edges are weighted with their depth. The depth of the path with maximum depth
between the poles of µ is the minimum depth of the edges in the unique path p in MST
between the poles of skeleton(µ).

6

Proof. By definition the depth d(p) is equal to d(lcc(p)), i.e., the minimum depth of its
edges. Let e be an edge of p with depth d(e) = d(p). Suppose, for contradiction, that
there is a second path p′ with d(p′) > d(e) = d(p). All edges in p′ have depth greater of
d(e). When e is removed, MST splits into two trees Tu and Tv, one containing the pole u
and the other containing the pole v. Each vertex of skeleton(µ) either falls into Tu or into
Tv. Since p′ connects u with v it necessarily contains an edge e′ which joins a vertex in Tu

with a vertex in Tv. If e′ is chosen to replace e, Tu and Tv are joined into tree T , which
has weight greater than MST , contradicting the hypothesis that MST is the maximum
spanning tree. �

Since skeleton(µ) is planar and weighted with integer values, a maximum spanning
tree can be constructed in linear time (see for example [1, 12]) with respect to the size
of skeleton(µ). Hence, because of Lemma 1 the whole Skeleton-Labelling step can be
performed in linear time.

The Edges-Sorting step requires special care. In fact, if we performed a separate
bucket sort for each P node, since there are instances where the depth has O(n) values,
where n is the number of vertices of G, in the worst case we spent quadratic time. Hence,
we do the following. First, we construct a unique set EP of the virtual edges of all the
P nodes, each e labelled with d(e), hsd(e), and with its P node. Second, we perform a
bucket sort of EP with respect to hsd(e). Third, we perform a second bucket sort with
respect to d(e) considering the virtual edges in the order obtained by the first sort. At
this point we have that the elements of EP are sorted according to the value of their
depth and, secondarily, with respect to their highest side depth. Finally, we scan EP and
distribute the edges in their proper skeletons. All this requires linear time.

4.2 The Embedding-Construction Phase

In the Embedding-Construction phase we first perform a bottom-up traversal of T
in which the c-planarity conditions are verified for each node µ and T is decorated with
suitable embedding descriptors. Secondly, we perform a top-down traversal of T producing
a c-planar embedding for graph G taking into account the values computed for each node
µ of T .

Let µ be the current node in the bottom-up traversal of T , let u and v be its poles
(assumed arbitrarily ordered at the beginning of the computation), and let e′ be the
virtual edge which represents µ in the skeleton of its parent µ′. Suppose skeleton(µ) has
been embedded and let Γµ be its c-planar embedding. We denote right (left) the side
that remains on the right (left) hand when traversing clockwise (counterclockwise) the
external face of Γµ from v to u. When computing Γµ we assign to high(e′) a value in
{right, left} which denotes which one between the right and left sides of Γµ corresponds in
pertinent(µ) to a path containing an edge e with d(e) = hsd(e′). Hence, when processing
node µ′, we use high(e′) to compute the Boolean value of flip(µ), that specifies if Γµ has
to be reversed when inserted into Γµ′ in the final top-down traversal.

Provided that the conditions stated in Theorem 2 hold for node µ, we compute an
embedding Γµ of skeleton(µ) (if more than one embedding is possible) and the values
flip(µ1), . . . , f lip(µk) for its children nodes µ1, . . . , µk, in such a way to minimize lsd(e′).
In the following it is specified how S, P and R nodes are processed.

7

4.2.1 Embedding Construction for S Nodes.

If µ is an S-node skeleton(µ) has a fixed embedding. We set flip(µ1), . . . , f lip(µk) so
that the corresponding high(e1), . . . , high(ek) are turned towards the same side of Γµ, say
right. Consequently, the left side has minimum depth lsd(e′) = mini lsd(ei).

4.2.2 Embedding Construction for R Nodes.

Suppose µ is an R node, with children µ1, . . . , µk. Let Γµ be the (unique) embedding of
skeleton(µ).

We have to test the c-planarity of Γµ, and to verify that for each edge e of skeleton(µ)
incident to two faces f1 and f2 of Γµ, with d(f1) ≤ d(f2), if d(f1) ≤ hsd(e) and d(f2) ≤
lsd(e) (see Theorem 2).

Consider the plane graph G∗ obtained from Γµ by splitting each edge e of Γµ with a
vertex of depth d(e). It is easy to see that the embedding of skeleton(µ) is c-planar if
and only if G∗ is c-planar.

In order to test the c-planarity of a c-connected clustered graph C(G, T), where G has
a fixed embedding Γ, we rely on Theorem 1. The statement of Theorem 1 requires to check
every cycle of G in order to prove the c-planarity of Γ. This, of course, is not efficient,
since we have an exponential number of cycles in a plane graph. Observe, however, that
the possible values of ac(c) are as many as the nodes of T . Hence, Theorem 1 can be
reformulated as follows:

Lemma 2 An embedding Γ of a c-connected clustered graph C(G, T) is c-planar if and
only if there is no node α of T such that G(α), induced by the vertices in α, contains a
cycle c that encloses an edge that is not in G(α).

Let C(G, T) be a c-connected clustered graph where G(V,E) is embedded, let dmax

be the height of T , and let D(V ′, E ′) be the dual graph of G. For each e ∈ E ′, weight e
with the depth of the corresponding primal edge. For each integer i ∈ [0, dmax], we define
the i-restricted dual Di as the subgraph of D containing only edges with weight at most
i and no isolated vertex.

Theorem 4 Let C(G, T) be a c-connected clustered graph and let dmax be the height of T .
An embedding Γ of G is c-planar if and only if:

1. for each integer i ∈ [0, dmax], graph Di is connected and

2. an edge er of the root of T is on the external face.

Proof. First, we prove the necessity of Conditions 1 and 2. Suppose that no edge of the
root of T is on the external face of Γ. By Property ?? there is at least one edge er of
the root of T in G. Hence, the lowest common cluster of the edges on the external face
includes edge er, and Theorem 1 applies. Suppose that the graph Dk is not connected
for a depth k in [0, dmax]. Since by definition Dk has no isolated vertex, each connected
component of Dk contains at least one edge. Denote with Cr the connected component
containing an edge er on the external face and denote with e′ an edge contained into a
connected component C ′ �= Cr. Consider all edges of D attached to a vertex of C ′ which
are not in C ′. These edges are not in Dk and the corresponding edges of G form a cycle

8

c. By Property ??, we have that edges in c can not be shared between two clusters of
level k. Hence, there exists a cluster α of level k containing the cycle c which separates
edges er and e′, not belonging to Tα. Since er is on the external face, e′ is enclosed by c
and Lemma 2 applies.

On the contrary, suppose that the embedding Γ is not c-planar. We show that both
Conditions 1 and 2 can not be verified. By Lemma 2 there exists a node α of T such that
the subtree Tα contains a cycle c that encloses an edge e which is not in Tα. Consider a
path p connecting e to c. By Property ??, p has an edge e′, enclosed in c, that belongs to a
proper ancestor of α. By Condition 2 and by the fact that er is not part of c, we have that
er is not enclosed by c. Hence, each path of D connecting the two edges corresponding to
er and e′ uses at least one edge corresponding to an edge of c. It follows that Dk is not
connected. �

A result similar to Theorem 4 has been presented in [4]. We have the following lemma.

Lemma 3 Let G be an embedded planar graph, let D be its dual with edges weighted with
the depth of the corresponding edges of G. Each i-restricted dual Di, with i ∈ [0, dmax], is
connected if and only if the minimum spanning tree mST (D) of D, rooted at any vertex
vr of D0, is such that edges of non-decreasing weights are encountered when traversing
each path p from vr to a leaf.

Proof. First observe that the i-restricted duals Di, for i ∈ [0, dmax], are the subgraphs of
D restricted to the faces and the edges with weight less or equal than i, where each face
is given the minimum weight of its incident edges. Also, observe that a weighted graph
H is connected if and only if it admits a (minimum) spanning forest mSF (H) which is
a single (minimum) spanning tree mST (H). Therefore, in order to check if each Di is
connected we could test whether it admits a minimum spanning tree mST (Di). Further,
since we weighted the edges of D with the depth of the corresponding edges of G, we have
that mSF (Di) is a subgraph of mST (Di+1).

If mSF (Di) is not connected for some i then each path in Dk connecting two nodes
on two different components of mSF (Di) uses at least one edge of weight greater than i.
Hence, all paths connecting vr to a node v that belongs to a different component (tree) of
mSF (Di) have at least one edge with weight greater than i. It follows that the minimum
weight path between vr and v is not monotonically non-decreasing. Suppose now that
mST (Dk) has a path p from vr to a leaf which is not monotonically non-decreasing, i.e., p
contains at least a sequence of edges of weight j preceded by edge e1 with weight w1 < j
and followed by edge e2 with weight w2 < j. Let i be the maximum between w1 and w2.
Since mSF (Di) is a subgraph of mST (Dk), we have that mSF (Di) contains e1 and e2,
but does not contain the path p, hence it is not connected. �

The conditions of Lemma 3 can be used to check the c-planarity of the embedding of
the plane graph G∗ in linear time. Let D∗ be the dual of G∗. We compute a minimum
spanning tree mST (D∗) of D∗. As D∗ is planar, mST (D∗) can be constructed in O(n∗),
where n∗ is the number of nodes of D∗ [1, 12]. Then, we easily check in O(n∗) time that
the depths are monotonically non-increasing when traversing mST (D∗) from the root to
the leaves.

Consider each children µi corresponding to ei. Edge ei is incident to two faces, f1

and f2 for which we assume w.l.o.g. d(f1) ≤ d(f2). If d(f1) > hsd(e) or d(f2) > lsd(e)

9

the algorithm fails since the graph is not c-planar. The value of high(µi) identifies one
of the two faces of ei, we call it fhigh. We distinguish two cases: (i) fhigh is an internal
face of Γµ. If f1 = fhigh then we set flip(µi) = false, otherwise flip(µi) = true. (ii)
fhigh is the external face. We preferentially embed the lowest side into an internal face.
Namely, let flow be the opposite face of fhigh with respect of ei. If d(flow) ≤ hsd(e) then
flip(µi) = true otherwise flip(µi) = false. This can be done in linear time.

We compute lsd(e′) and high(e′) in the following way. We consider the ordered split
pair {u, v} of e′ and we call br (bl) the path on the external face of Γµ connecting u to v
clockwise (counterclockwise). For each edge ei on br (bl), let wr,i (wl,i) be the depth of the
side of ei to be turned towards the external face according to flip(ei) computed above and
dr = mini wr,i (dl = mini wl,i). If dl < dr, we set lsd(e′) = dr and high(e′) = left otherwise
we set lsd(e′) = dl and high(e′) = right. Observe that, the procedure according to which
flip(µi) are computed assures that the embedding described is one with maximum value
of lsd(e′) among the possible c-planar embeddings of pertinent(e′).

4.2.3 Embedding Construction for P Nodes

If µ is a P node, we have to test the conditions stated in Theorem 2 for P nodes. If all
the conditions hold, we construct a c-planar embedding for skeleton(µ) which maximizes
the value of lsd(e′), otherwise the graph is not c-planar. Thanks to the Preprocessing
phase, we have a list I(µ) where all the virtual edges of skeleton(µ) appear ordered with
respect to the �e relationship defined as follows: an edge e1 precedes e2 (e1 �e e2) if
d(e1) > d(e2) or if d(e1) = d(e2) and hsd(e1) ≥ hsd(e2).

Condition (a) of Theorem 2 asks to check that skeleton(µ) does not contain three
pairwise incompatible edges. This can be done by considering the graph of the incompat-
ibilities between edges and checking whether this graph is bipartite. Let e1 be the first
element of I(µ). Condition (b) of Theorem 2 asks to test for each edge e ∈ I(µ), with
e �= e1, if d(e) = lsd(e). Also, Condition (b) asks to test for each edge e ∈ I(µ), with
e �= e1, if d(e) ≤ lsd(e1). All these tests can be easily done in time linear in the size of
skeleton(µ).

The construction of the embedding of skeleton(µ) consists of the computation of the
order of the edges of µ. Namely, the proof of Theorem 2 ensures that a c-planar embedding
of skeleton(µ) is such that edges are ordered into two sequences IL = 〈el1 	e el2 	e . . . 	e

elp〉 and IR = 〈er1 �e er2 �e . . . �e erq〉, each one composed by compatible edges. The
fact that the incompatibility graph is bipartite ensure the existence of IL and IR. Further,
since we want to maximize the value of lsd(e′), we search for a particular pair IL and IR
such that the difference between maxe∈IL

hsd(e) and maxe∈IR
hsd(e) is maximized.

The computation of IL and IR requires the use of the following lemma.

Lemma 4 Let I be a sequence of virtual edges ordered with respect to the �e relationship,
such that edges in I are pairwise compatible. Suppose e /∈ I is an edge following all edges
in I with respect to the �e relationship. If e is compatible with the last edge in I then e
is compatible with all edges in I.

Proof. Let elast be the last edge in I. Since e is compatible with elast and elast �e e,
we have that d(e) ≤ hsd(elast). Since all the edges in I are pairwise compatible, we also
have that d(elast) is less or equal than the highest side depth of all edges in I. It follows

10

that d(e) is less or equal than the highest side depth of each edge in I, and therefore e is
compatible with all edges in I. �

We build two sequences I1 and I2 by inserting one by one the edges of I(µ) into one of
them. Namely, we start by inserting e1 in I1. Let ei be the current edge and let e1,last and
e2,last be the last inserted elements of I1 and I2, respectively. If ei is incompatible with the
last element of one of the two sequences we insert it into the other sequence. Otherwise, if
ei is compatible with both e1,last and e2,last, then we insert it into the sequence containing
min{hsd(e1,last), hsd(e2,last)}. We set IL as the reverse of I1 and IR = I2.

Since we insert an edge ei into a sequence only if ei is compatible with the last ele-
ment of the sequence, and the sequences are ordered with respect to the �e relationship,
Lemma 4 ensures that both IL and IR contain pairwise compatible edges. If an edge e is
compatible with both the sequences, inserting it into the sequence with smaller value of
highest side depth on the last edge guarantees that the difference between maxe∈IL

hsd(e)
and maxe∈IR

hsd(e) is maximized. In fact, the following property holds:

Property 1 Let I be a sequence of edges ordered with respect to the �e relationship,
such that edges in I are pairwise compatible. The last edge elast in I has hsd(elast) =
maxe∈I(hsd(e)).

According to the construction rules provided in the sufficiency proof of the character-
ization given in [3], for each edge ei ∈ IL, we set flip(ei) = true if high(ei) = right, and
flip(ei) = false otherwise. Conversely, for each edge ei ∈ IR, we set flip(ei) = true if
high(ei) = left, and flip(ei) = false otherwise. Finally, the value of lsd(e′) is maximum
between hsd(el1) and lsd(erq). All the operations performed on a P node can be clearly
executed in linear time.

Finally, we compute the c-planar embedding of G. We start with the current em-
bedding equal to the skeleton of the child of the root of T and proceed by means of a
top-down traversal of T . For each node µ of T with children µ1, . . . , µk, the embeddings of
skeletons(µi) are merged into the current embedding. If flip(µi) = true the embedding
is flipped before the merge operation. This computation is linear since each skeleton is
flipped at most once.

The whole algorithm is summarized in Figures 2, 3, and 4. From the above discussion
we can state the following theorem.

Theorem 5 Given a c-connected clustered graph C(G, T), such that G is biconnected,
the above described algorithm tests the c-planarity of C, and, if C is c-planar, computes
a c-planar embedding of C in linear time.

5 Testing and Embedding Algorithm: General Case

In this section we extend the algorithm presented in Section 4 to the case of c-connected
clustered graph whose underlying graph is planar and simply connected.

The following lemmas permit to state the correctness of the algorithm when it chooses
a certain embedding of the cutvertices.

11

Lemma 5 Let C(G, T) be a c-planar clustered graph and let B be the block-cutvertex
tree of G. Let α be a cutvertex of B with parent µ and let {u, α} be a split pair of
µ. Suppose that in a c-planar embedding of C pertinent(α) appears in an internal face
of the embedding of pertinent(u, α). There exists a c-planar embedding of C such that
pertinent(α) is embedded in the external face of the embedding of pertinent(u, α).

(a)

α

u

α

µ

(b)

p()

p()µ

p(u,)α
α

Figure 1: (a) A portion of the BC-tree for the proof of Lemma 5. (b) The relationships
between three subgraphs pertinent(µ), pertinent(u, α), and pertinent(α), denoted p(µ),
p(u, α) and p(α), respectively.

Proof. Suppose that there is no c-planar embedding of G unless pertinent(α) is inside
pertinent(u, α). This implies that in any drawing of C with pertinent(α) embedded
outside pertinent(u, α) at least one of the following two conditions is verified: (i) there is
a cycle c of depth d(c) > d(pertinent(u, α)) enclosing pertinent(u, α); (ii) there are two
cycles c1 and c2 of depth greater than d(pertinent(α)) passing through pertinent(u, α)
and enclosing the two faces outside pertinent(u, α) (see the dotted and dashed cycles of
Fig. 1). In case (i), since c encloses both the faces outside pertinent(u, α), there can
not be a c-planar embedding with pertinent(α) inside pertinent(u, α). In case (ii), from
Fig. 1 it is apparent that the parts of the two cycles c1 and c2 outside pertinent(u, α)
form a cycle enclosing pertinent(u, α). Hence, there can not be a c-planar embedding
with pertinent(α) inside pertinent(u, α). pertinent(u, α). �

Lemma 6 Let C(G, T) be a c-planar clustered graph and let B be the block-cutvertex
tree of G. Let α be a cutvertex of B with children µ1 and µ2. Suppose that in a c-
planar embedding of C pertinent(µ2) appears in an internal face of the embedding of
pertinent(µ1). There exists a c-planar embedding of C such that pertinent(µ2) appears
in the external face of the embedding of pertinent(µ1).

Proof. Suppose that there is no c-planar embedding ofG unless pertinent(µ2) is not placed
inside a face of pertinent(µ1). This implies that in any drawing of C with pertinent(µ2)
embedded outside pertinent(µ1) there is a cycle c of depth d(c) > d(pertinent(µ2)) en-
closing pertinent(µ2). Since c necessarily encloses µ1 and µ2, there can not be a c-planar
embedding of C such that pertinent(µ2) is placed inside a face of pertinent(µ1). �

We now show a linear-time algorithm for testing and embedding a general c-connected
clustered graph.

12

BC-tree Decomposition. First, for each edge e of G we compute d(e). Second, we
compute the BC-tree B of G and root B to a block ν containing an edge e such that
d(e) = 0.

BC-tree Labelling. We traverse B bottom-up and compute for each cutvertex ρi the
depth of pertinent(ρi). This is done by taking the minimum depth of the pertinents
of the children blocks of ρi.

Block Preprocessing We perform a second bottom-up traversal of B and execute on
each block µ a variation of the Preprocessing phase for biconnected graphs, where
the sorting phase is factored out and cut-vertices are considered. Namely, for each
block µ the following two steps are performed.

SPQR-tree Decomposition. First, we compute an SPQR-tree Tµ rooted at any
edge er whose depth is the minimum depth of the block.

Skeleton Labelling. For each node σ in Tµ, consider each edge e of skeleton(σ)
such that pertinent(e) is a single edge e′. We label e such that hsd(e) =
lsd(e) = d(e) = d(e′). We perform a bottom-up traversal of Tµ in order to
label each virtual edge e with d(e) and hsd(e). Let e be a virtual edge of
any skeleton. The value of d(e) is computed with the same operations used
for biconnected graphs. Let ρ1, . . . , ρk be the cutvertices of µ contained in
skeleton(e) that are not poles of e, possibly comprehensive of the parent of µ.
The value of hsd(e) is the minimum of the highest side depths of the edges of
skeleton(e) and the depths of pertinent(ρi).

This implies that the parent cutvertex of µ is adjacent to a face f with lowest
depth in the computed embedding for µ. As stated in [3] the external face can
be changed so that the parent cutvertex is incident to the external face and
hence the condition of Theorem 3, modified as in Section 3, is verified.

Edges Sorting. We simultaneously sort the edges of all P nodes of all the computed
SPQR-trees with respect to the value of their depth, and secondarily with respect to
their highest side depths. We use a strategy analogous to that used for biconnected
graphs in order to preserve the linearity of this algorithmic step.

Block Embedding Construction. For each block µ we consider its SPQR-tree Tµ and
perform a bottom-up traversal of it. We check if a non-planarity condition (see The-
orem 2) is verified for the current node σ, possibly computing a c-planar embedding
of skeleton(σ) and the value of lsd(e) for the virtual edge e which represents σ in
the skeleton of its parent σ′.

In the case σ is a P node, the test of the c-planarity conditions, the computation of
the embedding of skeleton(σ), and the computation of lsd(e) follow the same rules
described for biconnected graphs (see Section 4).

In the case σ is an S node, we proceeds as for biconnected graphs. Plus, consider
each vertex ρ of skeleton(σ) which is also a cutvertex and is not a pole of σ. All
the blocks that are children of ρ in B are embedded in the side where all the highest
sides of the children of σ in T are embedded. The correctness of this approach is
implied by Lemmas 5 and 6.

13

In the case σ is an R node, the existence of cutvertices in skeleton(σ) must be taken
into account. Besides the tests performed for the biconnected case we have to make
sure that the second condition of Theorem 3, modified as in Section 3, is verified.
Namely, each cutvertex ρ that is not a pole of σ must be incident to a face f of
skeleton(σ) with d(f) less or equal than the depth of pertinent(ρ). When choosing
f , an internal face is always preferred if it respects this condition. All blocks that
are children of ρ in B are embedded in f . The correctness of this approach is implied
by Lemmas 5 and 6. If such a face does not exist the algorithm fails since the graph
is not c-planar.

We compute flips(·) of the children of σ as for biconnected graphs. When com-
puting lsd(e′) and high(e′) we proceed as for the biconnected graphs but for the
computation of dl and dr, see Section 4 Embedding Construction for R Nodes.
Namely, the computation of dr (dl) must take into account the depth of the cutver-
tices in br (bl) that have their blocks embedded in the external face of skeleton(σ).

Observe that, as in the biconnected case, the adopted procedure assures that the
embedding described by flip(·) and by the choices on the cutvertices, is one with
minimum value of lsd(e′) among the possible c-planar embeddings of pertinent(e′).

In the case σ is the unique child of the root of Tµ with poles u and v, besides the
regular operations described above, we check if u or v are cutvertices and embed all
their blocks in the external face.

The reporting of the embedding of µ is performed as for biconnected graphs.

Block Re-rooting and Merging. We consider the computed embedding Γµ of each
block µ of B and we adopt as external face of Γµ a face with minimum depth
incident to the parent cutvertex of µ. We merge together the obtained embeddings
of the blocks.

The whole algorithm is summarized in Figure 5. Due to the above description the
following theorem holds.

Theorem 6 The c-planarity of a c-connected clustered graph can be tested, and possibly
a c-planar embedding can be built, in linear time.

References

[1] D. Cheriton and R. E. Tarjan. Finding minimum spanning trees. SIAM J. Comput,
5(10):724–742, 1974.

[2] P. F. Cortese and G. Di Battista. Clustered planarity. In SCG ’05, pages 32–34,
2005.

[3] P. F. Cortese, G. Di Battista, F. Frati, M. Patrignani, and M. Pizzonia. C-
planarity of c-connected clustered graphs: Part I – Characterization. Tech. Re-
port RT-DIA-109-2006, Dip. Informatica e Automazione, Univ. Roma Tre, Jun 2006.
http://web.dia.uniroma3.it/ricerca/rapporti/rapporti.php.

14

[4] E. Dahlhaus. Linear time algorithm to recognize clustered planar graphs and its
parallelization. In C.L. Lucchesi, editor, LATIN 9́8, volume 1380 of LNCS, 1998.

[5] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice
Hall, Upper Saddle River, NJ, 1999.

[6] G. Di Battista and R. Tamassia. On-line planarity testing. SIAM J. Comput.,
25:956–997, 1996.

[7] S. Even. Graph Algorithms. Computer Science Press, Potomac, Maryland, 1979.

[8] Q. W. Feng, R. F. Cohen, and P. Eades. How to draw a planar clustered graph. In
Ding-Zhu Du and Ming Li, editors, Proc. COCOON’95, volume 959 of LNCS, pages
21–30. Springer-Verlag, 1995.

[9] Q. W. Feng, R. F. Cohen, and P. Eades. Planarity for clustered graphs. In Proc.
ESA ’95, volume 979 of LNCS, pages 213–226. Springer-Verlag, 1995.

[10] C. Gutwenger and P. Mutzel. A linear time implementation of spqr-trees. In Joe
Marks, editor, Graph Drawing, 2000, pages 77–90. Springer, 2001.

[11] T. Lengauer. Hierarchical planarity testing algorithms. J. ACM, 36(3), 1989.

[12] Tomomi Matsui. The minimum spanning tree problem on a planar graph. Discrete
Appl. Math., 58(1):91–94, 1995.

[13] Baruch Schieber and Uzi Vishkin. On finding lowest common ancestors: simplifica-
tion and parallelization. SIAM J. Comput., 17(6):1253–1262, 1988.

15

C-planarity algorithm for biconnected graphs

input: A c-connected clustered graph C(G, T), where G is a planar biconnected graph

output: A c-planar embedding of G if C is c-planar, a triconnected component causing
non-c-planarity otherwise

Preprocessing Phase
for all edge e ∈ G do

compute d(e), hsd(e), lsd(e)
end for
compute the SPQR tree T of G, rooted to an edge with d(e) = 0
for all node µ in T in post-order traversal do

let e′ be the virtual edge representing µ in the skeleton of its parent node.
hsd(e′) = mine∈skeleton(µ) hsd(e)
if µ is an S node then
d(e′) = mine∈skeleton(µ) d(e)

else if µ is a P node then
d(e′) = maxe∈skeleton(µ) d(e)

else if µ is an R node then
Compute a Maximum Spanning Tree MST of skeleton(µ)
Let p be the path between the poles in MST .
d(e′) = d(p)

end if
end for
sort the edges of each P node using a unique bucket sort.

Embedding Construction Phase
for all node µ in T in post-order traversal do

if µ is an S node then
for all e ∈ skeleton(µ) do

if high(e) = left then
flip(e) = true

else
flip(e) = false

end if
end for
lsd(e′) = mine∈skeleton(µ) lsd(e)
high(e′) = right

else if µ is an P node then
if ProcessPNode(µ,e′)=False then

return µ
end if

else if µ is an R node then
if ProcessRNode(µ,e′)=False then

return µ
end if

end if
end for
construct the c-planar embedding by performing a top-down traversal of T and consid-
ering values of flip(.)
return the embedding of G

Figure 2: The c-planarity testing and embedding algorithm for c-connected clustered
graphs whose underlying graph is biconnected.

Procedure ProcessPNode(µ,e′)
{The edges of skeleton(µ) are already ordered in a list I(µ)}
let e1 be the first element of I(µ)
if skeleton(µ) contains three pairwise incompatible edges then

return False
end if
for all e �= e1 in skeleton(µ) do

if d(e) �= lsd(e) or d(e) > lsd(e1) then
Return False

end if
end for
initialize lists IL = {e1} and IR = {}
for all e �= e1 in skeleton(µ) do
el=last element in IL, er=last element in IR
if e is incompatible with el then

append e to IR
else if e is incompatible with er then

append e to IL
else

append e to the list containing min{hsd(el), lsd(er)}
end if

end for
the embedding of skeleton(µ) is ILIR, where IL is the reverse of IL

for all e in IL do
if high(e) �= left then
flip(e) = true

end if
end for
for all e in IR do

if high(e) �= right then
flip(e) = false

end if
end for
lsd(e′) = max{mine∈IL

hsd(e),mine∈IR
hsd(e)}

if hsd(el) ≤ hsd(er) then
high(µ) = left

else
high(µ) = right

end if
return True

Figure 3: Testing and embedding procedure for P nodes.

Procedure ProcessRNode(µ,e′)
construct the graph G∗ from skeleton(µ)
compute the planar embedding of G∗ with the poles on the external face
compute the dual graph D of G∗

compute the minimum spanning tree mST of D
if mST is non monotonic then

return False
end if
for all e in skeleton(µ) do

let f1 and f2 be the faces incident to e, with d(f1) ≤ d(f2)
if hsd(e) < d(f1) or lsd(e) < d(f2) then

return False
else

Let fhigh be the face incident to e identified by high(e)
if f1 is the external face AND hsd(e) ≥ d(f2) then

if f1 = fhigh then
flip(e) = true

else
flip(e) = false

end if
else

if f1 �= fhigh then
flip(e) = true

else
flip(e) = false

end if
end if

end if
end for
let {u, v} the ordered split pair of e′

let br the path on the external face of skeleton(µ) connecting u to v clockwise
let bl the path on the external face of skeleton(µ) connecting u to v counterclockwise.
for all ei ∈ br do

let wr,i be the depth of the side of ei to be turned towards the external face
end for
for all ei ∈ bl do

let wl,i be the depth of the side of ei to be turned towards the external face
end for
dr = mini wr,i

dl = mini wl,i

if dl < dr then
lsd(e′) = dr

high(e′) = left
else
lsd(e′) = dl

high(e′) = right
end if
return true

Figure 4: Testing and embedding procedure for R nodes.

C-planarity testing and embedding algorithm for connected graphs

input: A c-connected clustered graph C(G, T), where G is a planar graph

output: “True” and a c-planar embedding of G if C is c-planar, “False” otherwise

Block Preprocessing Phase
for all edge e ∈ G do

Compute d(e), hsd(e), lsd(e)
end for
compute the BC tree B of G, rooted to a block containing an edge e with d(e) = 0
for all cutvertex ρ in B in post-order traversal do

compute the depth of pertinent(ρ)
end for
for all node µ in B in post-order traversal do

compute the SPQR tree Tµ rooted to an edge with minimum depth
For each non virtual edge e ∈ Tµ compute d(e), hsd(e), lsd(e)
for all node σ ∈ Tµ in post-order traversal do

compute d(σ) as in the biconnected case
let ρi be the cutvertices in skeleton(σ) different from the poles
compute hsd(σ) = mini{hsd(ei), d(pertinent(ρi))}, with ei ∈ skeleton(σ)

end for
end for
Sort the edges of each P node of each block with a unique bucket sort
Block Embedding Phase
for all node µ in B do

for all node σ ∈ Tµ in post-order traversal do
let ρi be the cutvertices in skeleton(σ) different from the poles
if σ is an S node then

process σ as in the biconnected case
embed the blocks connected to ρi in the highest side of skeleton(σ)

else if σ is an P node then
process σ as in the biconnected case

else if σ is an R node then
test the condition on skeleton(σ) as in the biconnected case
if each ρi is not incident to a face f with d(f) ≤ d(pertinent(ρi)) then

return False
else

embed the blocks of ρi in a suitable (possibly internal) face f
end if
compute the flip for each virtual edge as in the biconnected case
compute lsd(σ) considering the blocks embedded on the external face
compute high(σ) considering the blocks embedded on the external face

end if
end for
construct the embedding Γµ of µ as in the biconnected case
let f be a face with minimum depth incident to the root cutvertex of µ
choose f as external face for Γµ

end for
merge the embedding of the blocks

Figure 5: The c-planarity testing and embedding algorithm for c-connected clustered
graphs

