=
=
=
>

UNIVERSITA DEGLI STUDI DI ROMA TRE
Dipartimento di Informatica e Automazione
Via della Vasca Navale, 79 — 00146 Roma, Italy

—~
7o)
gyl

>,

A Method to Combine Algebraic Computations
with Related Deductions

WOLFGANG GEHRKE

RT-DIA-28-97 1997

Universita degli Studi di Roma Tre
Dipartimento di Informatica e Automazione
Via della Vasca Navale 79
I - 00146 Roma, Italy
wgehrke@inf.uniroma3.it

sponsored by the project MURST 40% “Calcolo Algebrico e Simbolico”

ABSTRACT

We investigate the utilization of parametric code to perform algebraic computation on the one hand and to
allow for related deduction on the other hand. This method is illustrated by the implementation of several
number systems and the study of their main properties. The examples are presented by means of the
programming language SML but we argue that the method is not restricted to this particular language.

1 Introduction

The recent development of numerous automated systems brought a high level of sophistication for the
support of mathematical calculation. One example are Computer Algebra Systems (CAS) which can
perform a large number of algebraic manipulations. Another example are Automated Theorem Provers
(ATP) which support the rigorous development of proofs.

Recent efforts concentrate on the combination of the two mentioned types of systems trying to enhance
the proving capabilities of ATP and to verify the calculations of CAS. Our work can be seen in this context
where we take a particular point of view: the correctness of algebraic algorithms. Our ultimate goal is to
establish a proof of correctness for fundamental algebraic algorithms.

This aim is not new, for a discussion in the context of finite mathematics see [Sla94]. The availability
of correct algebraic methods can be also seen as a contribution to the paradigm of Constraint Logic
Programming (CLP) [JM94]. In the context of reasoning and logic programming sound algebraic methods
are indispensable.

The method we will apply makes use of parametric code. This code is ready to be instantiated with
operational structures to perform computations. Furthermore the same parametric code can be used for
a symbolic instantiation suitable for proving properties of the resulting code.

It is essential that the parametric code is not changed itself but only instantiated in different ways.
Thus operations assumed in the parameters can be used in the given construction. In the same way
assumptions about properties of the parameters can be used to reason about the constructed code.

This method will be illustrated by the study of several number systems. Firstly the complex and hyper-
complex numbers are considered on top of the real numbers. Secondly the integers and rational numbers
are studied starting from the natural numbers.

The constructions are standard [EHH*90]. The well-known properties of these number systems are
those of rings and fields. Therefore the universal and special word problem for rings was of crucial im-
portance.

The proof procedures for the word problems of rings are related to Grobner bases [BW93] which
them-self are of computational nature. This more “semantic” approach significantly outperformed another
“syntactic” approach working with AC-unification. Furthermore with the intended semantics in mind also
constructions of counterexamples could be provided.

Mlustrated by these examples we contribute the following:

— a method of using parametric code to calculate and to reason about it,

— a case study where “semantic” methods (Grobner bases) outperform purely “syntactic” methods
(equational reasoning),

— adiscussion of the independence of our approach from the particular language chosen for presentation.

In Sec. 2 we sketch some background for the studied examples. The method is given in Sec. 3 followed
by the examples in Sec. 4. A discussion of our approach follows in Sec. 5. Finally we conclude and suggest
future work.

2 The Case Study and Related Background

This section gives an overview of the algebraic structures under consideration. We briefly sketch the known
main properties of these structures. Finally we present the algebraic procedures which can be used for
automated reasoning verifying these properties.

The considered examples in our study are various number systems. Firstly these are the integers and
rational numbers starting from the natural numbers. Secondly these are the complex and hyper-complex
numbers starting from the real numbers.

All these systems have in common that they are formed with the help of polynomial equations over the
correspondingly underlying system. Therefore handling multivariate polynomials will be of importance for
the proof procedures. In case of the integers and rational numbers additionally the presence of a congruence
relation has to be taken into account.

Firstly we consider the natural numbers N = (O, Iy, +n, #n) as the underlying structure. On top
of them the integers Z = (0z, 1z, +z, —z, *z) are introduced as equivalence classes of pairs of natural
numbers with

(a,b) ~z (¢,d) : <= a+nd=nc+nb

where (a,b) denotes a solution of b+ # =y a for a,b € N. On top of the integers the rational numbers
Q@ = (0g, 1o, +0, —q, *Q, 1/g) are introduced as equivalence classes of pairs of integers with

(e’f) ~Q (g’]l):C:> exg h ~g g%z f

where (e, f) denotes a solution of f *z y ~z € for e € Z and f € Z\ {0z}.

The operations on these pairs are introduced in the usual way cf. [EHHT90]. The constructions are
motivated by a search for inverse operations of addition and multiplication. In fact these constructions
allow for an easy definition of the corresponding inverse operations:

—z(a,b) := (b,a) for a,b € N
1/ole,) :=(f,e) fore, f € Z\ {0z}

Secondly we consider the real numbers R = (Og, lg, +&, —&, *&, 1 /&) as the underlying structure. On
top of them we introduce the complex and hyper-complex numbers. The complex numbers C can
also be understood as an algebraic extension of the real numbers allowing for a solution ¢ of the equation
1 *¢ 1 =¢ —clc and all complex numbers can be represented as o + (7 with a, 5 € R.

As a short reminder we present the hyper-complex numbers namely the quaternions H and the
octonions O by means of a multiplication table. This table makes use of the fact that H is a 4-dimensional
(a base is 1,4, 4, k) and O is a 8-dimensional (a base is 1,4, j, k, E, I, J, k) algebra over the real numbers
[EHHT90]. The Tab. 1 does not, contain an entry for the corresponding unit 1 of multiplication:

1 7 k ET JK
il-lk -j I-E-KJ
k-1 1 J K-E -I
klj -i -1 K-J1T-E
Ef-I -J-K-11i j k
IE-K J --1-k j
JIKE -T 5k -1-
Ki-J T E-k- 1 -1

Table 1. Multiplication Table of H and ©

After having introduced the object of study we sketch the involved abstract algebraic notions. We are
interested in the basic algebraic properties of these number systems. These can be mainly characterized
by rings and fields.

A ring with unit is an algebraic structure R = (0, 1,4+, —, %) such that the usual properties hold, i.e.
(0,4, —) form an Abelian group, 1 is a neutral element of the multiplication and distributivity holds. A
ring is called commutative or associative if this property holds for the multiplication.

A division ring is an algebraic structure 7' = (0, 1,4, —, x, 1/) such that (0, 1,4, —, ¥) is a ring where
all elements except 0 have a multiplicative inverse denoted by 1/. A skew field is an associative division
ring. A field is a commutative skew field.

For completeness we mention the notion of an integral domain which is an algebraic structure
D = (0,1,4, —, %) which is a commutative and associative ring. Furthermore it is not just zero ring, thus
0 # 1. Finally there are no divisors of 0,i.e. z#£0& 2/ 0=z 2/ #0.

Recall the following facts:

Lemma1l (cf. [EHHT90]).

Z 1s an integral domain.

R s a field.
Based on these facts we wish to derive:

Proposition2 (cf. [EHH*90]).

Q s a field.
C s a field.

H is a skew field.

Q s a division ring.

We will attempt to prove these facts automatically.

Obviously the most important notion is the one of a ring. Furthermore we have to model the division
in order to arrive at a division ring, skew field and field. There it will be necessary to keep track of
constraints which in this context are expressions which have to be different from zero.

Recall the following:

Theorem 3 (universal word problem for rings). The universal word problem for associative and
commutative rings with unit s decidable.

Proof. This can be shown by making use of a simplification procedure for multivariate polynomials
[BCL83]. Another way is to make use of a canonical term rewriting system for rings with AC-unification

[Hul80]. O

This fact will allow to derive most of the properties needed for the complex and hyper-complex numbers
if we only consider the ring axioms. The algorithm has to be applied component-wise according to the
dimension. It remains to handle the division properly.

In order to handle expressions with a multiplicative inverse we translate the expression with the help

f
© 00 11/ 1 v
'—)1, '—)1, $'—>x,$i—)1

In case of 1/ we keep track of {x} as a constraint. Furthermore the operations work in the following way

r i rxu+itxs r i r*t

— = % — =

s u 5% U s U skxu

with propagating the set {s, u, s u} in both cases as constraints.

We will only keep track of these constraints and provide them as an information for the user. Similar to
the case of rational numbers we work with a congruence = ~ % : <= r+*u = tx*s. This approach reduces
the universal word problem for a field to the universal word problem to an associative and commutative
ring with unit modulo a set of constraints.

It remains to provide a mean for working with the congruence relations ~z and ~g. A solution of
the universal word problem does no longer suffice since we have to start with some additional equations
expressed in form of polynomials. This is called the special word problem.

Recall the following:

Theorem 4 (special word problem for rings). The special word problem for associative and com-
mutative rings with unit is decidable.

Proof. This can be shown by using Grobner bases [Buc65, Buc85], here working with polynomials over
the integers [BW93]. The main insight is the equivalence of the following two statements:

L. Yoy .. Vap[\Z, fi(x) = 0 = fo(x) = 0] holds in the class of all associative and commutative rings
with unit. B

2. fo € Id(f1, ..., fm) where the ideal is taken in Z[X].

The Grobner bases is a convenient representation of a polynomial ideal allowing for solving numerous
problems related to ideals like in this case the membership test. a

This will allow for automated proofs showing properties of Z and Q. Actually we will make use of an even
stronger result using Grobner bases over principal ideal domains cf. [BW93].

Note 5. So far we made use of solutions for the universal and special word problem for rings. This has been
accompanied by a constraint handling which collects all occuring divisors. However there are situations
when a “yes/no” answer is not satisfactory and in particular in case of “no” we might be interested in a
counterexample.

We will reconsider the equality of multivariate polynomials for the construction of counterexamples.
Note that the integers Z can always be embedded into any ring with unit. Since the considered number
systems are also integral domains the following is helpful:

Lemma6 (cf. [Lip81]).

i) If D is an integral domain also D[z] is an integral domain.

ii) Let D be an integral domain, py1,p2 € D[] and ¢ > max(deg(p1),deg(p2)). If there are different
£1, ..., &q such that p1(z;) = pa(z;) ((=1,...,q) then p1 = p».

Since Z is an integral domain we can make use of the last lemma. Multivariate polynomials can be
constructed recursively. With the embedding of Z and the knowledge of working with an integral domain
this provides a finite search space for counter examples or in other words gives another alternative to
check equality of polynomials.

T [o | 0

UWPR
SWPR
UWPR + constraints
SWPR + constraints

ring properties

ring properties

laws for 1/

laws for 1/

counterexamples |c0mmutativity of *|associativity of *

Table 2. Overview of Proof Procedures

We have summarized the proof procedures in Tab. 2. UWPR refers to the universal and SWPR to the
special word problem for rings. We will show another counterexample illustrating the problem with the
attempt of defining a division beyond O.

3 Overview of the Method

Here we present the method which makes use of parametric code. The key idea is that parametric code
can be instantiated in different ways. According to the choice of instantiation the instance can be used

either for computation or for symbolic manipulation.

Computation

Deduction

computational
structure

proof

procedures

—

parametric code
(e.g. SML-functor)

symbolic
instance

symbolic
structure

computational
instance

Fig. 1. Overview of the Method

This method is visualized in Fig. 1. On the left is shown the computational part. On the right is shown
the deductive part.

The algebraic code is implemented with the help of parametric code. This code can be instantiated
with an operational or a symbolic structure. The process of instantiation is indicated by a normal and a
bold arrow indicating that the main interest is put on computing.

The provided symbolic structure and the generated symbolic instance can be used for reasoning. The
dashed arrow indicates that for the provided symbolic structure some proving techniques are assumed.
Those can be used for constructing proof procedures for the symbolic instance of the parametric code
which 1s indicated by a dotted arrow.

The main steps of applying this method can be summarized as follows:

. write parametric code for a new notion

. write the intended input structure for computations

. instantiate the code with this computational structure

. make experiments with the resulting computational instance

. write a symbolic structure which can be used by proof procedures
. prepare corresponding proof procedures for the symbolic structure
. instantiate the code with this symbolic structure

. try to adapt the proof procedures to the symbolic instance

0 =1 O O i W N —

In this way the organization of the computational part induce a similar organization of the deductive part.

Remark. This method is very flexible since it does not influence the degree of detail which has to be
provided for the reasoning part. Therefore one can adapt the needed characterization of the input structure
according to the needs of proving for the output structure. For our examples we remained entirely in the
range of fully automated procedures.

4 Examples

This section gives the flavor by showing the implementation of examples with the help of the programming
language SML [MTH90, MT91, Pau91]. We mainly concentrate on the previously outlined method. Firstly
we present the construction of the complex and hyper-complex numbers and thereafter we show the
construction of the integers and rational numbers.

The complex and hyper-complex numbers can be constructed by a single so called “doubling construc-
tion” over the real numbers which is reflected by the following parametric code:
functor Double(structure G : FieldLike

structure F : FieldLike
sharing type F.ground = G.$ and

] type G.ground = G.$)
sig
4 include FieldLike sharing type ground = G.$
end =
struct
(x ... %)
end

The structure G refers to the ground field and the structure F refers to the ring which should be duplicated
where the signature FieldLike looks like this:

signature FieldLike =

sig

type ground

val dimension : int val times : $ * $ -> §

type $ val one :

val g2f : ground -> §

val base : $ list val smult : ground * § -> §
val sprod : $ * $ -> ground

exception Dimension val norm : $ -> ground

val gl2f : ground list -> § val conj : $ -> $

val £2gl : $ -> ground list

val £2s : $§ -> string val re : $ -> $

val eq : $ * $ -> bool val im : $ > $
val vprod : $ * § -> $

val plus : $ *x § > §

val zero : $ exception Zerolnverse

val neg : $ -> $ val reci : $ -> $

val minus : $ * $ > $ end

The sharing in the functor Double guarantees that the type of the ground field will always be inherited.
If we are interested in computations a structure for the real numbers has to be provided which here 1s
approximated with the built-in floating point numbers:

structure Reals =
struct
type ground = real
val dimension = 1
type $ = real
fun g2f(r) = r
val base = [1.0]

(* ... %)

fun eq(rl : real, r2 : real) = (rl = r2)

val plus = Real.+
val zero 0.0

val neg = Real.”
val minus = Real.-

val times = Real.*
val one = 1.0

(* ... %)

end

With the help of this structure which matches the signature FieldLike we can construct all the compu-
tational instances for experiments:

structure Rc = Reals

structure Cc = Double(structure G = Reals
structure F = Rc)
structure Hc = Double(structure G = Reals
structure F = Cc)
structure Oc = Double(structure G = Reals
structure F = Hc)
structure Ac = Double(structure G = Reals
structure F = 0c)

The last structure Ac is another application of duplication which can be used for expermiments to invest-
igate why the division cannot be defined in the same way any more.
Now we prepare related deduction and for this purpose we introduce “symbolic” rings and fields:

signature AbstractRing =
sig
datatype term = Zero | One | Var of int |

Neg of term | Plus of term # term | Times of term * term
val t28 : term -> string
type intmultipoly

val simplify : term -> term
val meaning : term -> intmultipoly
val equal : term * term -> bool

val vars : term -> int list

val degrees : term -> (int -> int)

val eval : term * (int -> int) -> int
end

signature AbstractField =
sig
datatype term = Zero | One | Var of int | Neg of term |
Reci of term | Plus of term * term | Times of term * term
type ring
type field = ring * ring list * ring (* num, constraints, den *)
val t2f : term -> field
val t2s : term -> strin

val equal : field * fie%d -> bool
end

The main ingredients are the datatypes term for symbolic rings and fields. Note that all operations of
rings and fields are reflected by constructors with the exception that variables are added for the purpose
of deduction.

These symbolic structures for rings and fields prepare the ground for constructing symbolic real num-
bers:

structure SymbolicReals =
struct

local open abstractField

in
type ground = term
val dimension = 1
type $ = term
fun g2f(s) = s
val base = [One]
(k ... %)
fun eq(tl, t2) = equal (t2f(t1), t2£(t2))
fun plus(l,r) = abstractField.Plus(1l,r)
val zero = abstractField.Zero
fun neg(t) = abstractField.Neg(t)
fun minus(l,r) = plus(l,neg(r))
fun times(l,r) = abstractField.Times(1l,r)
val one = abstractField.One
(k... %)

end
end

It becomes clear in which way the operations correspond to the constructors. Even though this code can
almost be generated automatically we believe that it is still readable and short enough.
As before for computation we can generate now all symbolic instances:

structure Rs = SymbolicReals

structure Cs = Double(structure G = SymbolicReals
structure F = Rs)

structure Hs = Double(structure G = SymbolicReals
structure F = Cs)

structure Os = Double(structure G = SymbolicReals
structure F = Hs)

structure As = Double(structure G = SymbolicReals
structure F = 0s)

Finally we have to wrap some proof procedures around these symbolic instances which will use the
possibility to define variables inside terms:
signature Strategy =
sig
structure SF : FieldLike
val proveEq : int # (SF.$ list -> SF.$ * SF.$) -> bool
val cexdbase : int * (SF.$ list -> SF.$ * SF.$) -> (SF.$ list) option
val disproveEq : int * (SF.$ list -> SF.$ * SF.$)

=-> ((int 1list) list) option
end

proveEq is a function to check for equality, cex4base checks all combinations of base elements for a
counter example, disproveEq tries a finite set of points to find a counter example for the equality of two
polynomials.

According to the organization of the code for the computational instances the code for deduction
inherits a similar structure which is reflected by the functor Strategy and its application:

functor Strategy(structure SF : FieldLike
sharing type SF.ground = abstractField.term) : Strategy =

struct
(x ... %)

end
structure Rt = Strategy(structure SF = Rs)
structure Ct = Strategy(structure SF = Cs)
structure Ht = Strategy(structure SF = Hs)
structure 0t = Strategy(structure SF = 0s)
structure At = Strategy(structure SF = As)

These structures provide now a way for checking properties of complex and hyper-complex numbers.
Implicitly all work with the assumption that the ground structure is indeed a field.
Here we show several checks of properties:

val htc = Ht.proveEq(2, (fn [x,y] => (Hs.times(x,y),
Hs.times(y,x))))
val hta = Ht.proveEq(3, (fn [x,y,z] =>
(Hs.times (Hs.times(x,y),z) ,Hs.times (x,Hs.times(y,z)))))

val SOME(htce) = Ht.cexdbase(2, (fn [x,y] => (Hs.times(x,y),
Hs.times (y,x))))
val SOME(htce”) = Ht.disproveEq(2, (fn [x,y] =>
(Hs.times(x,y) ,Hs.times (y,x))))

val otc
val ota

0t.proveEq(2, (fn [x,y] => (Os.times(x,y),0s.times(y,x))))
0t.proveEq(3, (fn [x,y,z] => (Os.times(0s.times(x,y),z),
Os.times (x,0s.times(y,z)))))
val SOME(otce) = Ot.cexdbase(2, (fn [x,y] => (Os.times(x,y),
Os.times(y,x))))
val SOME(otce”) = 0t.disproveEq(2, (fn [x,y] => (0s.times(x,y),
Os.times (y,x))))

val SOME(otae) = 0t.cexdbase(3,
(fn [x,y,z] => (Os.times(x,0s.times(y,z)),
Os.times (Os.times(x,y),2))))
val SOME(otae”) = 0t.disproveEq(3,
(fn [x,y,z] => (Os.times(x,0s.times(y,z)),
Os.times (Os.times(x,y),2))))

val SOME(aal’e) =
At.disproveEq(2, (fn [x,yl=>
(As.times (As.times(x,y) ,As.conj(y)
As.times (x,As.times (y,As.conj(y))

)’
1))
val SOME(alr - e) =
At .disproveEq(2, (fn [x,y] =>
(As.times(As.conj(x) ,As.times(x,y)),

As.times(As.times (As.conj (x),x),y))))

The first two blocks deal with commutativity and associativity of the multiplication in H and © and make
use of the possibility to search for counterexamples in two ways. Running the last block demonstrates
that after another duplication of the octonions a version of the alternativity law does not hold any more
which is essential in defining the inverse with respect to multiplication.

This concludes the presentation for the complex and hyper-complex numbers. Now we proceed to
the integers and rational numbers. We will only focus on the most interesting aspects since the previous
example should have provided enough details of the method at work.

In a similar way firstly structures for computation are constructed:

NaturalNumbers
IntegerNumbers (Nc)

RationalNumbers (Zc)

structure Nc
structure Zc

structure Qc

Again the constructions are expressed as parametric code. There are two functors: IntegerNumbers
constructs the integers and RationalNumbers the rational numbers.
Afterwards these functors are instantiated symbolically resulting in the structures:

structure Ns = NaturalSymbols
structure Zs = IntegerSymbols
structure Qs = RationalSymbols

where all these structures contain a function impProve which takes three arguments and makes use of a
Grobner base computation. The first argument is the number of variables, the second argument is a list
of equalities which hold, the third argument is a list of equalities to be proved.

Several application of this function can be seen in the following:

val tlz = Zs.impProve(1l, [1, [(fn [a] => (a,a))])
val t2z = Zs.impProve(2, [(fn [a,b] => (a,b))], [(fn [a,b] => (b,a))])
val t3z = Zs.impProve(3, [(fn [a,b,c] => (a,b)),(fn [a,b,c] => (b,c))],
[(fn [a,b,c] => (a,c))])
val t4z = Zs.impProve(4, [(fn [a,b,c,d] => (a,b)),(fn [a,b,c,d] => (c,d))],
[(fn [a,b,c,d]=>(Zs.IntSym.plus(a,c) ,Zs.IntSym.plus(b,d))),
(fn [a,b,c,d]=>(Zs.IntSym.times(a,c) ,Zs.IntSym.times (b,d)))])
val t5z = Zs.impProve(2, [(fn [a,b] => (a,b))],
[(fn [a,b] => (Zs.IntSym.neg(a),Zs.IntSym.neg(b)))])

val zam™ =
Zs.impProve(6,[(fn [a,b,c,d,e,f] => (a,b)),
(fn [a,b,c,d,e,f] => (c,d)),
(fn [a,b,c,d,e,f] => (e,f))],

[(fn [a,b,c,d,e,f] =>
(Zg.IntSyn.times (a,Zs. IntSym.plus(c,e)),
Zs.IntSym.plus(Zs.IntSym.times(b,d) ,Zs.IntSym. times (b,£)))),

(fn [a,b,c,d,e,f] =>
(Zg.IntSym.times (Zs. IntSym.plus(a,c) ,e),
Zs.IntSym.plus(Zs.IntSym.times(b,f),
Zs.IntSym.times(d,£))))]1)

10

The first block checks that ~z is indeed a congruence relation and that the operations are independent of
the representative. The last call is a check of the distributivity laws with different representative.

Finally we show some examples for checking properties of rational numbers. The polynomial equations
which have to be treated are more complicated as in the case of integers.
val gqmi =

Qs.impProve(1, [1,

[(fn [a] => (Qs.RatSym.times(a,Qs.RatSym.reci(a)),
Qs.RatSym.one)),

(fn [a] => (Qs.RatSym.times(Qs.RatSym.reci(a),a),
Qs.RatSym.one))])
val gqmi~ =
Qs.impProve(2, [(fn [a,b] => (a,b))],

[(fn [a,b] => (Qs.RatSym.times(a,Qs.RatSym.reci(b)),
Qs.RatSym.one)),

(fn [a,b] => (Qs.RatSym.times(Qs.RatSym.reci(a),b),
Qs.RatSym.one))])

These examples verify that the multiplication has an inverse where the constraints are simply displayed
for information when running the code.

Remark. In the last part we have been automatically proving properties of Z and Q. Nevertheless we have
been already working with the multivariate polynomials over the integers and the related Grobner bases
construction. Is this a contradiction?

No, since in fact we would like to start out from N and its properties. But we are mainly interested in
equations and the multivariate polynomials over the integers are intended as the equality of that polynomial
and zero. By allowing entire polynomials on both hand sides of an equation we can completely avoid the
use of negative terms.

Therefore the language of multivariate polynomials over the natural numbers and their equations is
completely sufficient. It is only another way of coding and does not influence the work of e.g. the Grobner
bases computation. Thus we can consider the properties of Z and (@ to be really derived from properties

of N.

5 Discussion

In this section we want to discuss two points. Firstly we comment on our experience with a purely syntactic
approach by equational reasoning. Secondly we argue that the presented method does not depend on the
programming language SML chosen for purpose of convenient presentation.

The studied properties of the various number systems were related to the universal and special word
problem for rings. Semantically this universal word problem can be solved by normal forms for multivariate
polynomials and the special word problem can be solved by means of Grobner bases. In case of the universal
word problem for rings one could also apply equational reasoning using a canonical system for rings with
AC-unification or one can even simulated Buchberger’s algorithm by rewriting techniques[Biin96].

In fact we also tried along these lines with the help of an interface to the Larch Prover [GG91]. However
the necessity of AC-unification became a bottleneck. In particular for problems related to the higher-
dimensional hyper-complex numbers the prover did not respond in a reasonable time and we interrupted
the proving attempt.

For our method note that it relies on the availability of syntactic means in a given programming
language to express parametric code. The programming language SML is only one example where this
is quite conveniently possible. But it is not the only such language as for example Ada allows “generic
packages” or C++ “class templates”.

In all these languages it is possible to instantiate parametric code in an operational way and in a
symbolic way. Naturally this symbolic instance can be used in a similar way to prove properties. The
choice of the programming language does matter when properties of that language have to be shown.

We have been choosing SML because it has a formally defined semantics which potentially allows for
proving statements about this language. The concept of functor which provides the mean for parametric
code could be used to functorize also over all language dependent constructs. In this way not only the
dependency on certain constructions but also the dependency on properties of the language can be made
completely transparent.

11

6 Conclusions and Future Work

We have presented a method how to combine algebraic computations with related deductions making use
of parametric code. One instantiation by operational structures can be immediately used to test examples.
Another instantiation by a symbolic structure provides a framework to prove properties of the parametric
code.

This idea is demonstrated by the study of different number systems and their properties. The necessary
proof procedures are related to multivariate polynomials and Grobner bases. This semantical treatment
itself has the character of a computation rather than a deduction.

In order to close the cycle and to arrive at verified code for algebraic algorithms this method has to be
applied to the proof procedures them-self. For this purpose the availability of a formal semantics — as in
the case of SML — becomes an important point for the attempt of such correctness proofs what we intend
to try as future work.

Another gap we would like to close is the lack of a suitable implementation for the real numbers in the
sense of computable real numbers. The availability of such an implementation is of importance for exact
real computations. However proof techniques for the real numbers will require a quite different treatment
than polynomial equations.

References

[BCL83] B. Buchberger, G.E. Collins, and R. Loos. Computer Algebra - Symbolic and Algebraic Computation.
Springer-Verlag, 1983.

[Buc65] B. Buchberger. FEin Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem
nulldimensionalen Polynomideal. Doctoral Dissertation, Mathematical Institute, University of Inns-
bruck, Austria, 1965.

[Buc85] B. Buchberger. Multidimensional Systems Theory, chapter Grobner bases: An algorithmic method in
polynomial ideal theory, pages 184-232. Reidel, Dordrecht, 1985.

[Bin96] R. Blindgen. Buchberger’s algorithm: The term rewriter’s point of view. Theoretical Computer Science,
159:143-190, 1996.

[BW93] T. Becker and V. Weispfenning. Grébner Bases: A Computational Approach to Commutative Algebra.
Number 141 in Graduate Texts in Mathematics. Springer-Verlag, 1993. in Cooperation with H. Kredel.

[EHH'90] H.-D. Ebbinghaus, H. Hermes, F. Hirzebruch, M. Koecher, K. Mainzer, J. Neukirch, A. Prestel, and
R. Remmert. Numbers. Number 123 in Graduate Texts in Mathematics. Springer-Verlag, 1990.

[GG91] S.J. Garland and J.V. Guttag. A Guide to LP, The Larch Prover. Massachusetts Institute of Techno-
logy, 1991.

[Hul80] J.-M. Hullot. A Catalogue of Canonical Term Rewriting Systems. Technical Report CSI-113, SRI
International, April 1980.

[TM94] J.J. Jaffar and M.J. Maher. Constraint logic programming: A survey. The Journal of Logic Program-
ming, 19,20:503-581, 1994.

[Lip&1] J.D. Lipson. FElements of Algebra and Algebraic Computing. Addison-Wesley Publishing Company,
1981.

[MT91] R. Milner and M. Tofte. Commentary on Standard ML. MIT Press, 1991.

[MTHO90] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press, 1990.

[Pau91l] L.C. Paulson. ML for the Working Programmer. Cambridge University Press, 1991.

[Sla94] J. Slaney. The Crisis in Finite Mathematics: Automated Reasoning as Cause and Cure. In A. Bundy,
editor, 12th International Conference on Automated Deduction, number 814 in Lecture Notes in Arti-
ficial Intelligence, pages 1-13. Springer-Verlag, 1994.

This article was processed using the ¥TEX macro package with LLNCS style

12

