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ABSTRACT

We investigate the utilization of parametric code to perform algebraic computation on the one hand and to
allow for related deduction on the other hand� This method is illustrated by the implementation of several
number systems and the study of their main properties� The examples are presented by means of the
programming language SML but we argue that the method is not restricted to this particular language�

�



� Introduction

The recent development of numerous automated systems brought a high level of sophistication for the
support of mathematical calculation� One example are Computer Algebra Systems �CAS� which can
perform a large number of algebraic manipulations� Another example are Automated Theorem Provers
�ATP� which support the rigorous development of proofs�

Recent e�orts concentrate on the combination of the two mentioned types of systems trying to enhance
the proving capabilities of ATP and to verify the calculations of CAS� Our work can be seen in this context
where we take a particular point of view� the correctness of algebraic algorithms� Our ultimate goal is to
establish a proof of correctness for fundamental algebraic algorithms�

This aim is not new� for a discussion in the context of �nite mathematics see �Sla���� The availability
of correct algebraic methods can be also seen as a contribution to the paradigm of Constraint Logic
Programming �CLP� �JM���� In the context of reasoning and logic programming sound algebraic methods
are indispensable�

The method we will apply makes use of parametric code� This code is ready to be instantiated with
operational structures to perform computations� Furthermore the same parametric code can be used for
a symbolic instantiation suitable for proving properties of the resulting code�

It is essential that the parametric code is not changed itself but only instantiated in di�erent ways�
Thus operations assumed in the parameters can be used in the given construction� In the same way
assumptions about properties of the parameters can be used to reason about the constructed code�

This method will be illustrated by the study of several number systems� Firstly the complex and hyper

complex numbers are considered on top of the real numbers� Secondly the integers and rational numbers
are studied starting from the natural numbers�

The constructions are standard �EHH����� The well
known properties of these number systems are
those of rings and �elds� Therefore the universal and special word problem for rings was of crucial im

portance�

The proof procedures for the word problems of rings are related to Gr�obner bases �BW�
� which
them
self are of computational nature� This more �semantic� approach signi�cantly outperformed another
�syntactic� approach working with AC
uni�cation� Furthermore with the intended semantics in mind also
constructions of counterexamples could be provided�

Illustrated by these examples we contribute the following�

� a method of using parametric code to calculate and to reason about it�
� a case study where �semantic� methods �Gr�obner bases� outperform purely �syntactic� methods

�equational reasoning��
� a discussion of the independence of our approach from the particular language chosen for presentation�

In Sec� � we sketch some background for the studied examples� The method is given in Sec� 
 followed
by the examples in Sec� �� A discussion of our approach follows in Sec� �� Finally we conclude and suggest
future work�

� The Case Study and Related Background

This section gives an overview of the algebraic structures under consideration� We brie�y sketch the known
main properties of these structures� Finally we present the algebraic procedures which can be used for
automated reasoning verifying these properties�

The considered examples in our study are various number systems� Firstly these are the integers and
rational numbers starting from the natural numbers� Secondly these are the complex and hyper
complex
numbers starting from the real numbers�

All these systems have in common that they are formed with the help of polynomial equations over the
correspondingly underlying system� Therefore handling multivariate polynomials will be of importance for
the proof procedures� In case of the integers and rational numbers additionally the presence of a congruence
relation has to be taken into account�

Firstly we consider the natural numbers N � ��N� �N��N� �N� as the underlying structure� On top
of them the integers Z� ��Z� �Z��Z��Z� �Z� are introduced as equivalence classes of pairs of natural
numbers with

�a� b� �Z�c� d� ��� a�Nd �Nc�Nb






where �a� b� denotes a solution of b�Nx �Na for a� b � N� On top of the integers the rational numbers
Q� ��Q� �Q��Q��Q� �Q� ��Q� are introduced as equivalence classes of pairs of integers with

�e� f� �Q�g� h� ��� e �Zh �Zg �Zf

where �e� f� denotes a solution of f �Zy �Ze for e �Zand f �Zn f�Zg�
The operations on these pairs are introduced in the usual way cf� �EHH����� The constructions are

motivated by a search for inverse operations of addition and multiplication� In fact these constructions
allow for an easy de�nition of the corresponding inverse operations�

�Z�a� b� �� �b� a� for a� b � N
��Q�e� f� �� �f� e� for e� f �Zn f�Zg

Secondly we consider the real numbersR� ��R� �R��R��R� �R� ��R� as the underlying structure� On
top of them we introduce the complex and hyper�complex numbers� The complex numbers C can
also be understood as an algebraic extension of the real numbers allowing for a solution i of the equation
i �C i �C �C�C and all complex numbers can be represented as �� �i with �� � � R�

As a short reminder we present the hyper
complex numbers namely the quaternions H and the
octonionsO by means of a multiplication table� This table makes use of the fact that H is a �
dimensional
�a base is �� i� j� k� and O is a �
dimensional �a base is �� i� j� k� E� I� J�K� algebra over the real numbers
�EHH����� The Tab� � does not contain an entry for the corresponding unit � of multiplication�

� i j k E I J K

i �� k �j I �E �K J
j �k �� i J K �E �I
k j �i �� K �J I �E
E �I �J �K �� i j k
I E �K J �i �� �k j
J K E �I �j k �� �i
K �J I E �k �j i ��

Table �� Multiplication Table of H and O

After having introduced the object of study we sketch the involved abstract algebraic notions� We are
interested in the basic algebraic properties of these number systems� These can be mainly characterized
by rings and �elds�

A ring with unit is an algebraic structure R � ��� ������ �� such that the usual properties hold� i�e�
������� form an Abelian group� � is a neutral element of the multiplication and distributivity holds� A
ring is called commutative or associative if this property holds for the multiplication�

A division ring is an algebraic structure F � ��� ������ �� ��� such that ��� ������ �� is a ring where
all elements except � have a multiplicative inverse denoted by ��� A skew �eld is an associative division
ring� A �eld is a commutative skew �eld�

For completeness we mention the notion of an integral domain which is an algebraic structure
D � ��� ������ �� which is a commutative and associative ring� Furthermore it is not just zero ring� thus
� �� �� Finally there are no divisors of �� i�e� z �� � � z� �� �� z � z� �� ��

Recall the following facts�

Lemma� 	cf
 �EHH���
�


Z is an integral domain�
R is a �eld�

Based on these facts we wish to derive�

Proposition� 	cf
 �EHH���
�


Q is a �eld�
C is a �eld�

�



H is a skew �eld�
O is a division ring�

We will attempt to prove these facts automatically�
Obviously the most important notion is the one of a ring� Furthermore we have to model the division

in order to arrive at a division ring� skew �eld and �eld� There it will be necessary to keep track of
constraints which in this context are expressions which have to be di�erent from zero�

Recall the following�

Theorem� 	universal word problem for rings�
 The universal word problem for associative and
commutative rings with unit is decidable�

Proof� This can be shown by making use of a simpli�cation procedure for multivariate polynomials
�BCL�
�� Another way is to make use of a canonical term rewriting system for rings with AC
uni�cation
�Hul���� ut

This fact will allow to derive most of the properties needed for the complex and hyper
complex numbers
if we only consider the ring axioms� The algorithm has to be applied component
wise according to the
dimension� It remains to handle the division properly�

In order to handle expressions with a multiplicative inverse we translate the expression with the help
of

� �	
�

�
� � �	

�

�
� ��x �	

�

x
� x �	

x

�

In case of ��x we keep track of fxg as a constraint� Furthermore the operations work in the following way

r

s
�

t

u
��

r � u� t � s

s � u

r

s
�
t

u
��

r � t

s � u

with propagating the set fs� u� s � ug in both cases as constraints�
We will only keep track of these constraints and provide them as an information for the user� Similar to

the case of rational numbers we work with a congruence r
s
� t

u
��� r �u � t � s� This approach reduces

the universal word problem for a �eld to the universal word problem to an associative and commutative
ring with unit modulo a set of constraints�

It remains to provide a mean for working with the congruence relations �Zand �Q� A solution of
the universal word problem does no longer su�ce since we have to start with some additional equations
expressed in form of polynomials� This is called the special word problem�

Recall the following�

Theorem� 	special word problem for rings�
 The special word problem for associative and com�
mutative rings with unit is decidable�

Proof� This can be shown by using Gr�obner bases �Buc��� Buc���� here working with polynomials over
the integers �BW�
�� The main insight is the equivalence of the following two statements�

�� 
x� � � �
xn�
Vm

l�� fi�x� � � � f��x� � �� holds in the class of all associative and commutative rings
with unit�

�� f� � Id�f�� � � � � fm� where the ideal is taken in Z�  X��

The Gr�obner bases is a convenient representation of a polynomial ideal allowing for solving numerous
problems related to ideals like in this case the membership test� ut

This will allow for automated proofs showing properties ofZand Q� Actually we will make use of an even
stronger result using Gr�obner bases over principal ideal domains cf� �BW�
��

Note 	� So far we made use of solutions for the universal and special word problem for rings� This has been
accompanied by a constraint handling which collects all occuring divisors� However there are situations
when a �yes!no� answer is not satisfactory and in particular in case of �no� we might be interested in a
counterexample�

We will reconsider the equality of multivariate polynomials for the construction of counterexamples�
Note that the integers Zcan always be embedded into any ring with unit� Since the considered number
systems are also integral domains the following is helpful�

�



Lemma� 	cf
 �Lip��
�

i
 If D is an integral domain also D�x� is an integral domain�
ii
 Let D be an integral domain� p�� p� � D�x� and q � max�deg�p��� deg�p���� If there are di�erent
x�� � � � � xq such that p��xi� � p��xi� �i � �� � � � � q� then p� � p��

Since Zis an integral domain we can make use of the last lemma� Multivariate polynomials can be
constructed recursively� With the embedding ofZand the knowledge of working with an integral domain
this provides a �nite search space for counter examples or in other words gives another alternative to
check equality of polynomials�

Q C H O

UWPR ring properties
SWPR ring properties

UWPR � constraints laws for ��
SWPR � constraints laws for ��
counterexamples commutativity of � associativity of �

Table �� Overview of Proof Procedures

We have summarized the proof procedures in Tab� �� UWPR refers to the universal and SWPR to the
special word problem for rings� We will show another counterexample illustrating the problem with the
attempt of de�ning a division beyond O�

� Overview of the Method

Here we present the method which makes use of parametric code� The key idea is that parametric code
can be instantiated in di�erent ways� According to the choice of instantiation the instance can be used
either for computation or for symbolic manipulation�

Computation Deduction

computational
 structure

parametric code
 (e.g. SML-functor)

symbolic
 structure

symbolic
 instance

computational
 instance

proof
 procedures

Fig� �� Overview of the Method

This method is visualized in Fig� �� On the left is shown the computational part� On the right is shown
the deductive part�
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The algebraic code is implemented with the help of parametric code� This code can be instantiated
with an operational or a symbolic structure� The process of instantiation is indicated by a normal and a
bold arrow indicating that the main interest is put on computing�

The provided symbolic structure and the generated symbolic instance can be used for reasoning� The
dashed arrow indicates that for the provided symbolic structure some proving techniques are assumed�
Those can be used for constructing proof procedures for the symbolic instance of the parametric code
which is indicated by a dotted arrow�

The main steps of applying this method can be summarized as follows�

�� write parametric code for a new notion
�� write the intended input structure for computations

� instantiate the code with this computational structure
�� make experiments with the resulting computational instance
�� write a symbolic structure which can be used by proof procedures
�� prepare corresponding proof procedures for the symbolic structure
�� instantiate the code with this symbolic structure
�� try to adapt the proof procedures to the symbolic instance

In this way the organization of the computational part induce a similar organization of the deductive part�

Remark� This method is very �exible since it does not in�uence the degree of detail which has to be
provided for the reasoning part� Therefore one can adapt the needed characterization of the input structure
according to the needs of proving for the output structure� For our examples we remained entirely in the
range of fully automated procedures�

� Examples

This section gives the �avor by showing the implementation of examples with the help of the programming
language SML �MTH��� MT��� Pau���� We mainly concentrate on the previously outlined method� Firstly
we present the construction of the complex and hyper
complex numbers and thereafter we show the
construction of the integers and rational numbers�

The complex and hyper
complex numbers can be constructed by a single so called �doubling construc

tion� over the real numbers which is re�ected by the following parametric code�

functor Double�structure G � FieldLike
structure F � FieldLike
sharing type F�ground � G�� and

type G�ground � G��� �
sig

include FieldLike sharing type ground � G��
end �
struct

�� ��� ��
end

The structure G refers to the ground �eld and the structure F refers to the ring which should be duplicated
where the signature FieldLike looks like this�

signature FieldLike �
sig

type ground
val dimension � int val times � � � � �	 �
type � val one � �
val g
f � ground �	 �
val base � � list val smult � ground � � �	 �

val sprod � � � � �	 ground
exception Dimension val norm � � �	 ground
val gl
f � ground list �	 � val conj � � �	 �
val f
gl � � �	 ground list
val f
s � � �	 string val re � � �	 �
val eq � � � � �	 bool val im � � �	 �

val vprod � � � � �	 �
val plus � � � � �	 �
val zero � � exception ZeroInverse
val neg � � �	 � val reci � � �	 �
val minus � � � � �	 � end

�



The sharing in the functor Double guarantees that the type of the ground �eld will always be inherited�
If we are interested in computations a structure for the real numbers has to be provided which here is

approximated with the built
in �oating point numbers�

structure Reals �
struct

type ground � real
val dimension � �
type � � real
fun g
f�r� � r
val base � ���
�

�� ��� ��
fun eq�r� � real� r
 � real� � �r� � r
�

val plus � Real��
val zero � 
�

val neg � Real��
val minus � Real��

val times � Real��
val one � ��


�� ��� ��
end

With the help of this structure which matches the signature FieldLike we can construct all the compu

tational instances for experiments�

structure Rc � Reals

structure Cc � Double�structure G � Reals
structure F � Rc�

structure Hc � Double�structure G � Reals
structure F � Cc�

structure Oc � Double�structure G � Reals
structure F � Hc�

structure Ac � Double�structure G � Reals
structure F � Oc�

The last structure Ac is another application of duplication which can be used for expermiments to invest

igate why the division cannot be de�ned in the same way any more�

Now we prepare related deduction and for this purpose we introduce �symbolic� rings and �elds�

signature AbstractRing �
sig

datatype term � Zero � One � Var of int �
Neg of term � Plus of term � term � Times of term � term

val t
s � term �	 string
type intmultipoly

val simplify � term �	 term
val meaning � term �	 intmultipoly
val equal � term � term �	 bool

val vars � term �	 int list
val degrees � term �	 �int �	 int�
val eval � term � �int �	 int� �	 int

end

signature AbstractField �
sig

datatype term � Zero � One � Var of int � Neg of term �
Reci of term � Plus of term � term � Times of term � term

type ring
type field � ring � ring list � ring �� num� constraints� den ��

val t
f � term �	 field
val t
s � term �	 string
val equal � field � field �	 bool

end

The main ingredients are the datatypes term for symbolic rings and �elds� Note that all operations of
rings and �elds are re�ected by constructors with the exception that variables are added for the purpose
of deduction�

These symbolic structures for rings and �elds prepare the ground for constructing symbolic real num

bers�

structure SymbolicReals �
struct

�



local open abstractField
in

type ground � term
val dimension � �
type � � term
fun g
f�s� � s
val base � �One�

�� ��� ��
fun eq�t�� t
� � equal�t
f�t��� t
f�t
��

fun plus�l�r� � abstractField�Plus�l�r�
val zero � abstractField�Zero
fun neg�t� � abstractField�Neg�t�
fun minus�l�r� � plus�l�neg�r��

fun times�l�r� � abstractField�Times�l�r�
val one � abstractField�One

�� ��� ��
end

end

It becomes clear in which way the operations correspond to the constructors� Even though this code can
almost be generated automatically we believe that it is still readable and short enough�

As before for computation we can generate now all symbolic instances�

structure Rs � SymbolicReals

structure Cs � Double�structure G � SymbolicReals
structure F � Rs�

structure Hs � Double�structure G � SymbolicReals
structure F � Cs�

structure Os � Double�structure G � SymbolicReals
structure F � Hs�

structure As � Double�structure G � SymbolicReals
structure F � Os�

Finally we have to wrap some proof procedures around these symbolic instances which will use the
possibility to de�ne variables inside terms�

signature Strategy �
sig

structure SF � FieldLike

val proveEq � int � �SF�� list �	 SF�� � SF��� �	 bool
val cex�base � int � �SF�� list �	 SF�� � SF��� �	 �SF�� list� option
val disproveEq � int � �SF�� list �	 SF�� � SF���

�	 ��int list� list� option
end

proveEq is a function to check for equality� cex�base checks all combinations of base elements for a
counter example� disproveEq tries a �nite set of points to �nd a counter example for the equality of two
polynomials�

According to the organization of the code for the computational instances the code for deduction
inherits a similar structure which is re�ected by the functor Strategy and its application�

functor Strategy�structure SF � FieldLike
sharing type SF�ground � abstractField�term� � Strategy �

struct
�� ��� ��

end

structure Rt � Strategy�structure SF � Rs�
structure Ct � Strategy�structure SF � Cs�
structure Ht � Strategy�structure SF � Hs�
structure Ot � Strategy�structure SF � Os�
structure At � Strategy�structure SF � As�

These structures provide now a way for checking properties of complex and hyper
complex numbers�
Implicitly all work with the assumption that the ground structure is indeed a �eld�

Here we show several checks of properties�

val htc � Ht�proveEq�
� �fn �x�y� �	 �Hs�times�x�y��
Hs�times�y�x����

val hta � Ht�proveEq��� �fn �x�y�z� �	
�Hs�times�Hs�times�x�y��z��Hs�times�x�Hs�times�y�z�����

�



val SOME�htce� � Ht�cex�base�
� �fn �x�y� �	 �Hs�times�x�y��
Hs�times�y�x����

val SOME�htce�� � Ht�disproveEq�
� �fn �x�y� �	
�Hs�times�x�y��Hs�times�y�x����

val otc � Ot�proveEq�
� �fn �x�y� �	 �Os�times�x�y��Os�times�y�x����
val ota � Ot�proveEq��� �fn �x�y�z� �	 �Os�times�Os�times�x�y��z��

Os�times�x�Os�times�y�z�����
val SOME�otce� � Ot�cex�base�
� �fn �x�y� �	 �Os�times�x�y��

Os�times�y�x����
val SOME�otce�� � Ot�disproveEq�
� �fn �x�y� �	 �Os�times�x�y��

Os�times�y�x����
val SOME�otae� � Ot�cex�base���

�fn �x�y�z� �	 �Os�times�x�Os�times�y�z���
Os�times�Os�times�x�y��z����

val SOME�otae�� � Ot�disproveEq���
�fn �x�y�z� �	 �Os�times�x�Os�times�y�z���

Os�times�Os�times�x�y��z����

val SOME�aal�e� �
At�disproveEq�
��fn �x�y��	

�As�times�As�times�x�y��As�conj�y���
As�times�x�As�times�y�As�conj�y������

val SOME�alr�e� �
At�disproveEq�
� �fn �x�y� �	

�As�times�As�conj�x��As�times�x�y���
As�times�As�times�As�conj�x��x��y����

The �rst two blocks deal with commutativity and associativity of the multiplication in H and O and make
use of the possibility to search for counterexamples in two ways� Running the last block demonstrates
that after another duplication of the octonions a version of the alternativity law does not hold any more
which is essential in de�ning the inverse with respect to multiplication�

This concludes the presentation for the complex and hyper
complex numbers� Now we proceed to
the integers and rational numbers� We will only focus on the most interesting aspects since the previous
example should have provided enough details of the method at work�

In a similar way �rstly structures for computation are constructed�

structure Nc � NaturalNumbers
structure Zc � IntegerNumbers�Nc�
structure Qc � RationalNumbers�Zc�

Again the constructions are expressed as parametric code� There are two functors� IntegerNumbers

constructs the integers and RationalNumbers the rational numbers�
Afterwards these functors are instantiated symbolically resulting in the structures�

structure Ns � NaturalSymbols
structure Zs � IntegerSymbols
structure Qs � RationalSymbols

where all these structures contain a function impProve which takes three arguments and makes use of a
Gr�obner base computation� The �rst argument is the number of variables� the second argument is a list
of equalities which hold� the third argument is a list of equalities to be proved�

Several application of this function can be seen in the following�

val t�z � Zs�impProve��� ��� ��fn �a� �	 �a�a����
val t
z � Zs�impProve�
� ��fn �a�b� �	 �a�b���� ��fn �a�b� �	 �b�a����
val t�z � Zs�impProve��� ��fn �a�b�c� �	 �a�b����fn �a�b�c� �	 �b�c����

��fn �a�b�c� �	 �a�c����
val t�z � Zs�impProve��� ��fn �a�b�c�d� �	 �a�b����fn �a�b�c�d� �	 �c�d����
��fn �a�b�c�d��	�Zs�IntSym�plus�a�c��Zs�IntSym�plus�b�d����
�fn �a�b�c�d��	�Zs�IntSym�times�a�c��Zs�IntSym�times�b�d�����
val t�z � Zs�impProve�
� ��fn �a�b� �	 �a�b����

��fn �a�b� �	 �Zs�IntSym�neg�a��Zs�IntSym�neg�b�����

val zam� �
Zs�impProve�����fn �a�b�c�d�e�f� �	 �a�b���
�fn �a�b�c�d�e�f� �	 �c�d���
�fn �a�b�c�d�e�f� �	 �e�f����

��fn �a�b�c�d�e�f� �	
�Zs�IntSym�times�a�Zs�IntSym�plus�c�e���
Zs�IntSym�plus�Zs�IntSym�times�b�d��Zs�IntSym�times�b�f�����

�fn �a�b�c�d�e�f� �	
�Zs�IntSym�times�Zs�IntSym�plus�a�c��e��
Zs�IntSym�plus�Zs�IntSym�times�b�f��

Zs�IntSym�times�d�f������

��



The �rst block checks that �Zis indeed a congruence relation and that the operations are independent of
the representative� The last call is a check of the distributivity laws with di�erent representative�

Finally we show some examples for checking properties of rational numbers� The polynomial equations
which have to be treated are more complicated as in the case of integers�

val qmi �
Qs�impProve��� ���

��fn �a� �	 �Qs�RatSym�times�a�Qs�RatSym�reci�a���
Qs�RatSym�one���

�fn �a� �	 �Qs�RatSym�times�Qs�RatSym�reci�a��a��
Qs�RatSym�one����

val qmi� �
Qs�impProve�
� ��fn �a�b� �	 �a�b����

��fn �a�b� �	 �Qs�RatSym�times�a�Qs�RatSym�reci�b���
Qs�RatSym�one���

�fn �a�b� �	 �Qs�RatSym�times�Qs�RatSym�reci�a��b��
Qs�RatSym�one����

These examples verify that the multiplication has an inverse where the constraints are simply displayed
for information when running the code�

Remark� In the last part we have been automatically proving properties ofZand Q� Nevertheless we have
been already working with the multivariate polynomials over the integers and the related Gr�obner bases
construction� Is this a contradiction"

No� since in fact we would like to start out from N and its properties� But we are mainly interested in
equations and the multivariate polynomials over the integers are intended as the equality of that polynomial
and zero� By allowing entire polynomials on both hand sides of an equation we can completely avoid the
use of negative terms�

Therefore the language of multivariate polynomials over the natural numbers and their equations is
completely su�cient� It is only another way of coding and does not in�uence the work of e�g� the Gr�obner
bases computation� Thus we can consider the properties ofZand Q to be really derived from properties
of N�

� Discussion

In this section we want to discuss two points� Firstly we comment on our experience with a purely syntactic
approach by equational reasoning� Secondly we argue that the presented method does not depend on the
programming language SML chosen for purpose of convenient presentation�

The studied properties of the various number systems were related to the universal and special word
problem for rings� Semantically this universal word problem can be solved by normal forms for multivariate
polynomials and the special word problem can be solved by means of Gr�obner bases� In case of the universal
word problem for rings one could also apply equational reasoning using a canonical system for rings with
AC
uni�cation or one can even simulated Buchberger#s algorithm by rewriting techniques�B�un����

In fact we also tried along these lines with the help of an interface to the Larch Prover �GG���� However
the necessity of AC
uni�cation became a bottleneck� In particular for problems related to the higher

dimensional hyper
complex numbers the prover did not respond in a reasonable time and we interrupted
the proving attempt�

For our method note that it relies on the availability of syntactic means in a given programming
language to express parametric code� The programming language SML is only one example where this
is quite conveniently possible� But it is not the only such language as for example Ada allows �generic
packages� or C�� �class templates��

In all these languages it is possible to instantiate parametric code in an operational way and in a
symbolic way� Naturally this symbolic instance can be used in a similar way to prove properties� The
choice of the programming language does matter when properties of that language have to be shown�

We have been choosing SML because it has a formally de�ned semantics which potentially allows for
proving statements about this language� The concept of functor which provides the mean for parametric
code could be used to functorize also over all language dependent constructs� In this way not only the
dependency on certain constructions but also the dependency on properties of the language can be made
completely transparent�

��



� Conclusions and Future Work

We have presented a method how to combine algebraic computations with related deductions making use
of parametric code� One instantiation by operational structures can be immediately used to test examples�
Another instantiation by a symbolic structure provides a framework to prove properties of the parametric
code�

This idea is demonstrated by the study of di�erent number systems and their properties� The necessary
proof procedures are related to multivariate polynomials and Gr�obner bases� This semantical treatment
itself has the character of a computation rather than a deduction�

In order to close the cycle and to arrive at veri�ed code for algebraic algorithms this method has to be
applied to the proof procedures them
self� For this purpose the availability of a formal semantics � as in
the case of SML � becomes an important point for the attempt of such correctness proofs what we intend
to try as future work�

Another gap we would like to close is the lack of a suitable implementation for the real numbers in the
sense of computable real numbers� The availability of such an implementation is of importance for exact
real computations� However proof techniques for the real numbers will require a quite di�erent treatment
than polynomial equations�
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