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ABSTRACT

In this paper trans�nite interpolation�approximation is discussed� This is a pow�

erful approach to generation of curves� surfaces and solids �and even higher dimen�

sional manifolds� by blending lower dimensional geometric objects� Trans�nite

blending� e�g� used in Gordon�Coons patches� is well known to mathematicians

and CAD people� It is presented here in a very simple conceptual and compu�

tational framework� which leads such a powerful modeling to be easily handled

by the non mathematically sophisticated user of graphics techniques� Trans�nite

blending is discussed in this paper by making use of a very powerful and simple

functional language for geometric design�
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� Introduction

Parametric curves and surfaces� as well splines� are usually de�ned �see e�g� ����

as vector�valued functions generated from some vector space of polynomials or

rationals �i�e� ratio of polynomials� over the �eld of real numbers� In this paper

it is conversely presented an uni�ed view of curves� surfaces� and multivariate

manifolds as vector�valued functions generated from the same vector spaces� but

over the �eld of polynomial �or rational� functions itself� This choice implies

that the coe�cients of the linear combination which uniquely represents a curved

mapping in a certain basis are not real numbers� as usually� but vector�valued

functions�

This approach is a strong generalization� which contains the previous ones as

very special cases� For example� the standard approach of Hermite interpolation

for curves� where two extreme points and tangents are interpolated� can so be

applied to surfaces� where two extreme curves of points are interpolated with as�

signed derivative curves� or even to volume interpolation of two assigned surfaces

with assigned normals� Notice that such an approach is not new� and is quite

frequently used in CAD applications� mainly to ship and airplane design� since

from the times that Gordon�Coons patches were formulated ��� ��� It is sometime

called function blending ��� ��� or trans�nite interpolation ��� ���

Trans�nite interpolation� that the author preferes to call trans�nite blending�

because it can also be used for approximation� is usually quite hard to handle

by using standard imperative languages �usually the aged� lovely and fashioned

Fortran�� In particular� it is quite di�cult to be abstracted� and too often ad

hoc code must be developed to handle the speci�c application class or case� A

strong mathematical background is also needed to both implement and handle

such kind of software� This fact strongly discouraged the di�usion of such a

powerful modeling technique outside the close neighbourhood of automobile� ship

and airplane shell design�

The original contribution of this paper was both in using a general algebraic

setting which simpli�es the description of trans�nite blending by the use of func�

tions without variables� and in embedding such an approach into a modern func�

tional computing environment ����� where functions can be easily multiplied and

added exactly as numbers� This results in an amazing descriptive power when

dealing with parametric geometry� Several examples of this power are given in the
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paper� Consider� e�g�� that multivariate trans�nite Bezier blending of any degree

with both domain and range spaces of any dimension is implemented �Section ����

with �� lines of quite readable source code�

Last but not least� in the paper we limited our exposition to B�ezier and

Hermite cases for sake of space� Actually the same approach can be applied to

any kind of parametric representation of geometry� including splines� Notice in

particular that di�erent kinds of curves surfaces and splines can be freely blended�

so giving a kind of design freedom rarely seen before�

� Background

��� Parametric geometry

Parametric representation of geometric objects is concerned with a mapping �

between normed vector spaces X and Y � where

� 
 U � Y� U � X�

In most useful cases both X and Y are the support of Euclidean spaces� say

Ep and Eq� with p � q� which can be identi�ed with X and Y � respectively�

� is often used as a simplicial mapping� This one is applied to some simplicial

decomposition � of the domain U to generate a simplicial approximation ����

of the image set ��U� � Y � For example� an approximation with linear triangles

of a parametric surface embedded in �D is the common output of the modeling

process of such a surface�

The generation of a smooth picture of the curved object ��U� � Y is usually

left to the graphics hardware used for rendering� Illumination and shading tech�

niques are there applied to either the colors or the normals of the vertices of ����

to generate a picture of ��U� with the appropriate appearance of smoothness�

If the dimension of the domain space X is p � �� then the geometric object

��U� is a curve embedded in a q�dimensional space� If p � �� then ��U� is a

surface embedded in a q�dimensional space� With q � �� � the set ��U� is either

a plane curve�surface or a space curve�surface� respectively�

��� Some PLaSM elements

PLaSM is a geometry�oriented extension of a subset of the functional language FL
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developed by Backus� Williams and others at IBM Research ��� ��� In the PLaSM

language design the powerful algebraic approach to programming of FL was com�

bined with a dimension�independent treatment of embedded data structures and

geometric algorithms ���� �� ���� For sake of readibility� a table with the meaning

of the few language constructs used in this paper is given in the Appendix�

A primitive MAP construct is given in PLaSM to generate a simplicial approxi�

mation ���� of the point�set ��U�� with � 
 U � Eq

MAP�VectFun�Dom

where VectFun is a CONSed component�wise expression of a parametric mapping�

of the kind

CONS 
� ��� � � � ��q �

which evaluates to the vector�valued mapping function

�� � � � �� �q � � such that � 
 ��Dom� � Eq�

and where Dom is a cell decomposition of any polyhedral subset of U � The seman�

tics of a MAP expression is the following
 �a� a simplicial complex ��Dom� which

decomposes the Dom polyhedron is generated �b� the function VectFun is applied

to all vertices of such simplicial complex� so generating a simplicial approxima�

tion ����Dom�� of the result� Clearly� VectFun must have so many component

functions as the dimension of the target space Eq�

Some trans�nite B�ezier and Hermite maps are given as examples in the paper�

by using only a minimal PLaSM subset� For a description of syntax and semantics

of the language the reader is referred to ����� Notice that 
�� and 
�� stand for

function application and composition� Such PLaSM notations closely correspond

to the standard functional notations� so that

�g � f��x stands for �g � f��x��

Notice also that the operators 
��� 
��� 
�� and 
� � denote algebraic operations

between either numbers or functions� As usual� with standard mathematical

notation


�f � g��u� � f�u� � g�u�� �fg��u� � f�u�g�u�� and so on�

The corresponding PLaSM notation would be


�f � g� 
 u � f 
 u � g 
 u� �f � g� 
 u � f 
 u � g 
 u� and so on�
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The selector functions S�� S�� � � � � Sn are applied to sequences� and respec�

tively select the �rst� second and n�th component of the sequence they are applied

to


S� 
� a� b� c� d �� b�

Finally notice that the prede�ned K function is a very useful constructor of con�

stant functions� and will be largely used in the sequel� With standard functional

notation and with PLaSM notation� we have� respectively


��a��x� � ���a���x� � a for any x�

K 
 a 
 x � �K 
 a� 
 x � a for any x�

� Generating geometry in function spaces

Parametric maps � 
 U � Y used in Computer Graphics and CAD usually belong

to the space of rational �i�e� ratio of polynomials� functions of bounded integer

degree n� Since the space Zn of such functions is a �nite�dimensional vector space

over the �eld Zn itself� then each � � Zn can be expressed uniquely as a linear

combination of n � � basis functions �i � Zn with coordinate functions �i � Zn�

so that

� � ���� � 	 	 	 � �n�n�

Hence a unique coordinate representation

� � ���� � � � � �n�
B

of the mapping is given� after a basis B � f��� � � � � �ng � Zn has been chosen�

The power basis� the cardinal �or Lagrange� basis� the Hermite basis� the Bern�

stein�B�ezier basis and the B�spline basis are the most common and useful choices

for such a basis�

The coordinate functions �i may be easily generated� as will be explained

in the following subsections� by using the 
geometric handles� of the mapping�

usually data points pi � Y � to be interpolated or approximated by the set ��U��

Only greek letters� either capitals or lower�case� will be used in the sequel to

denote functions� Please notice that B and H are also greek upper�case letters

for 	 and 
� respectively�
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��� Univariate case

Let consider the simple univariate case � 
 U � X � Y � where the dimension

p of domain X is one� To generate the coordinate functions �i it is su�cient to

transform each data point pi � Y into a constant vector�valued function� so

�i � ��pi�� where ��pi� 
 U � Y 
 u 
� pi�

Using the functional notation with explicit variables� the constant function is

such that

��pi��u� � pi

for each parameter value u � U � The �higher�level� constructor K of such constant

functions plays a fundamental role in PLaSM� as well as in its parent language FL�

as will be shown in Example ����

Example ��� �Cubic B	ezier curve in the plane
 The cubic B�ezier plane curve

depends on four points p	
p�
p�
p� � E�� which are given as formal parame�

ters of the function Bezier� which generates the � mapping� The local functions

b	
b�
b�
b� implement the Bernstein�B�ezier basis functions 	�k �
�
�

k

�
uk�� �

u���k� � � k � ��

DEF Bezier� �p	
p�
p�
p���IsSeq� �

� �x�p	 
 b	� � �x�p� 
 b�� � �x�p� 
 b�� � �x�p� 
 b��


�y�p	 
 b	� � �y�p� 
 b�� � �y�p� 
 b�� � �y�p� 
 b�� �

WHERE

b	 � u� 
 u� 
 u�


b� � K�� 
 u� 
 u� 
 u


b� � K�� 
 u� 
 u 
 u


b� � u 
 u 
 u


x � K�S�
 y � K�S�
 u� � K�� � u
 u � S�

END�

The x and y functions� de�ned as composition of a selector with the constant

function constructor K� respectively select the �rst �second	 component of their

argument sequence and transform such a number in a constant function�

A polygonal approximation of the B�ezier curve with �� line segments is �nally

generated by evaluating the expression
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MAP� �Bezier����	
��
��
��
��
	�
��
	���� �Domain��	��

where a 
D polyhedral complex which subdivides the ��� �� interval into n adjacent

line segments is generated by the PLaSM function�

DEF Domain �n��IsIntPos� � QUOTE����n����n���

��� Multivariate case

When the dimension p of the domain space X is greater than one� two main

approaches can be used to construct a parametric mapping �� The �rst approach

is the well�known 
tensor�product� method the second approach corresponds to


function blending�� also called 
trans�nite blending��

Tensor�product method In tensor�product method� both coordinate func�

tions �generated by data�points� and basis functions can be arranged into tensors

�n������np and �n� �����np depending on p indices� The mapping function is so given

by the scalar product of such function tensors


� � �n������np 	 �n������np �
X

i��������n���� ���
ip�������np

�i������ip�i������ip�

More importantly� each multivariate basis function is generated by tensor product

from the univariate basis of the same kind


�i������ip�u�� � � � � up� � �i��u���i��u�� 	 	 	 �ip�up�

A well�known example is that of bicubic B�ezier surface patches in three�space�

where U � ��� ���� p � �� q � � and n� � n� � ��

Trans�nite blending method Let consider a multivariate mapping � 
 U �

Y � where U � X and X is a p�dimensional space� Since � depends on p param�

eters� in the following will be denoted as �p�

In trans�nite blending �p is computed by linear combination of np � � maps

�depending on p� � parameters� with the univariate basis of degree np� In other

words


�p � �p��
�

�� � 	 	 	�p��
np

�np�
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The coordinate representation of � with respect to the basis B � ���� � � � � �np�

is so given by np � � maps depending on p� � parameters


�p �
�
�p��
�

� � � � ��p��
np

�
B

As an example of trans�nite blending consider the generation of a bicubic

B�ezier surface mapping B�u�� u�� as a combination of four B�ezier cubic curve

maps Bk�u��� with � � k � �� where some curve maps may possibly reduce to a

constant point map


B�u�� u�� �
�X

k��

Bk�u�� 	
�

k�u��

where

	�k�u� �

�
�

k

�
uk ��� u���k � � � k � ��

is the Bernstein�B�ezier cubic basis� Analogously� a three�variate B�ezier solid body

mapping B�u�� u�� u��� of degree n� on the last parameter� may be generated by

univariate B�ezier blending of surface maps Bk�u�� u��� some of which possibly

reduced to a curve map or even to a constant point map


B�u�� u�� u�� �
n�X
k��

Bk�u�� u�� 	
n�
k �u��

The more interesting aspects of such approach are !exibility and simplicity�

Conversely than in tensor�product method� there is no need that all component

geometries have the same degree� and even neither that were all generated us�

ing the same function basis� For example� a quintic B�ezier surface map may be

generated by blending both B�ezier curve maps of lower �even zero� degree to�

gether with Hermite and Lagrange curve maps� Furthermore� it is much simpler

to combine lower dimensional geometries �i�e� maps� than to meaningfully assem�

bly the multi�index tensor of control data �i�e� points and vectors� to generate

multivariate manifolds with tensor�product method�

Trans�nite B	ezier blending The amazing descriptive power of the PLaSM

functional approach to geometric design is made evident here� where trans�nite

B�ezier blending of any degree is implemented in few lines of code� by easily

combining coordinate maps which may depend on any number of parameters�

Notice in fact that the B�ezier function given here can be used to blend points

to give curve maps� to blend curve maps to give surface maps� to blend surface
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maps to give solid maps� and so on� Notice also that the given implementation

is independent on the dimensions p and q of domain and range spaces X and Y �

At this purpose� �rst a small toolbox of related functions is needed� to com�

pute the factorial n"� the binomial coe�cients
�
n

i

�
� the Bernstein�B�ezier functions

	n
i �u� and the B�u��n� Bernstein basis of degree n� with

B�u��n� � f	n
�
�u�� 	n

�
�u�� � � � � 	n

n�u�g

DEF Fact �n��IsInt� � 
��CAT�����
 ���n���

DEF Choose �n
i��IsInt� � Fact�n � �Fact�i 
 Fact��n�i���

DEF Bernstein �u��IsFun��n��IsInt��i��IsInt� �


��K��Choose��n
i��


��ID
K�i�
 

�����K��
ID�
K��n�i����u�

DEF BernsteinBase �u��IsFun��n��IsInt� � AA��Bernstein�u�n���	��n��

Then the Bezier�u function is given� to be applied on the sequence of ControlData�

which may contain either control points pk or control maps �p��
k � In the for�

mer case each component of each control point is �rstly transformed into a

constant function� The body of the Bezier�u function just linearly combines

component�wise the sequence ��k� of coordinate functions generated by the ex�

pression �TRANS�fun��ControlData with the basis sequence �	n
k � generated by

BernsteinBase�u�degree� where the degree n equates the number of geometric

handles minus one�

DEF Bezier �u��IsFun� �ControlData��IsSeq� �

�AA����AA�
�TRANS� � DISTR��

� �TRANS�fun��ControlData
 BernsteinBase�u�degree �

WHERE

degree � LEN�ControlData � �


fun � �AA�AA���IF��IsFun
ID
K��

END�

It is much harder to explain in few words what actual argument to pass �and

why� for the formal parameter u of the Bezier function� As a rule of thumb let

pass either the selector S� if the function must return a univariate �curve� map�

or S� to return a bivariate �surface� map� or S� to return a threevariate �solid�

map� and so on�

Example ��� �B	ezier curves and surface
 Four B�ezier curve maps C�� C��

C�� and C� of degrees �� �� � and � are respectively de�ned as�

��



DEF C	 � Bezier�S����	
	
	�
��	
	
	���

DEF C� � Bezier�S����	
�
	�
��
�
	�
��
�
	���

DEF C� � Bezier�S����	
�
��
��
�
���
��
�
��
���
�
	���

DEF C� � Bezier�S����	
�
	�
��
�
��
��	
�
�����

It may be useful to notice that the control points have three coordinates� so that

the generated maps C�� C�� C�� and C� will have three component functions� Such

maps can be blended with the Bernstein�B�ezier basis to produce a cubic bivariate

�surface	 mapping�

B�u�� u�� � C	�u��	
�

�
�u�� � C��u��	

�

�
�u�� � C��u��	

�

�
�u�� � C��u��	

�

�
�u���

Such a linear combination of coordinate functions with the B�ezier basis �this time

working on the second coordinate of points in U domain	 is performed by the

PLaSM function Sup�� de�ned in the following� by using again the Bezier function�

DEF Surf� � Bezier�S���C	
C�
C�
C���

A simplicial �in this case with triangles	 approximation of the surface B���� ���� �

E� is �nally generated by evaluating the PLaSM expression

MAP� �CONS�Surf��� �Domain��	 
 Domain��	��

Notice that the primitive function CONS� applied to the sequence of component

functions generated by evaluating Surf�� produces a single vector�valued function�

According to the semantics of the MAP operator� CONS�sup� is applied to all ver�

tices of the automatically generated simplicial decomposition � of the �D product

polyhedron �Domain 
 �	 � Domain 
 �	� � E�� A simplicial approximation B���

of the surface B���� ���� � E� is �nally produced�

The four generating curves and the generated cubic trans�nitely blended sur�

face are displayed in Figures 
a and 
b� It is possible to show that such surface

interpolates the four boundary curves de�ned by the extreme control points� ex�

actly as in the case of tensor�product method� but obviously with much greater

generality� since any de�ning curve may be of any degree�

� Trans�nite Hermite interpolation

The cubic Hermite univariate map is the unique cubic polynomial H 
 ��� �� � Eq

which matches two given points p�� p� � Eq and derivative vectors t�� t� � �q for

��



Figure �
 �a� Graphs of the four B�ezier curve maps c	�u��� c��u��� c��u��

and c��u�� �b� graphs of c	�u�� and c��u�� together with the two B�ezier

maps b��u�� and b��u�� generated by the extreme control points �c�

graph of the surface Sur��u�� u��� joined to the graphs of the previous

curves�

u � �� � respectively� Let denote as H��� � �
�
�
� 
�

�
� 
�

�
� 
�

�
� the cubic Hermite

function basis� with


�i 
 ��� �� � �� � � i � ��

and such that


�
�
�u� � �u���u���� 
�

�
�u� � �u���u�� 
�

�
�u� � u���u��u� 
�

�
�u� � u��u��

Then the mapping H can be written as

H � �� 

�

�
� �� 


�

�
� �� 


�

�
� �� 


�

�

� ��p�� 

�

�
� ��p�� 


�

�
� ��t�� 


�

�
� ��t�� 


�

�
�

It is easy to verify� for the univariate case� that


H��� � ��p����� � p�� H��� � ��p����� � p��

H ���� � ��t����� � t�� H ���� � ��t����� � t��

and that the image set H���� ��� is the desired curve in Eq�

The multivariate trans�nite Hermite map Hq is easily de�ned by allowing the

coordinate functions ��k�H to be any map depending on at most p�� parameters�

Cubic trans�nite Hermite implementation A cubic trans�nite Hermite�

mapping is implemented in PLaSM� where four data objects are given as formal

��



parameters� Such data objects may be either points�vectors� i�e� sequences of

numbers� or ������n�variate maps� i�e� sequences of �curve�surface�solid�etc�

component functions� or even both� as will be shown in the following examples�

DEF Hermite� �u��IsFun� �p�
p�
t�
t���IsSeq� �

�AA����AA�
�TRANS��DISTL��

��h	
h�
h�
h��
 �TRANS�fun���p�
p�
t�
t���

WHERE

h	 � k�� 
 u� � k�� 
 u� � k��


h� � k�� 
 u� � k�� 
 u�


h� � u� � k�� 
 u� � u


h� � u� � u�
 u� � u
u
u
 u� � u
u


fun � �AA�AA���IF��IsFun
ID
K��

END�

��� Bivariate surface by cubic blending of curves

Example ��� �Grid generation
 Two Hermite curve maps c� and c� are de�

�ned� so that the 
D curves c����� ��� and c����� ��� are restrained to z � � plane�

DEF c� � Hermite��S�����
	
	�
�	
�
	�
�	
�
	�
���
	
	���

DEF c� � Hermite��S����	��
	
	�
�	
	��
	�
�	
�
	�
���
	
	���

Some di�erent grids are easily generated from the plane surface which in�

terpolates the curves c� and c�� At this purpose it is su�cient to apply the

Hermite��S� function to di�erent tangent curves�

DEF d � �AA���TRANS���c�
c���

DEF grid� � Hermite��S���c�
c�
d
d��

DEF grid� � Hermite��S���c�
c�
��	��
�	��
	�
d��

DEF grid� � Hermite��S���c�
c�
�S��d
�	��
	�
d��

The grids generated by maps grid�� grid� and grid� are shown in Figure ��

The tangent map d is simply obtained as vector di�erence of the curve maps c�

and c��

It is interesting to notice that the map grid� can be also generated as linear

�trans�nite	 B�ezier interpolation of the two curves� Clearly the solution as cubic

Hermite is more �exible� as it is shown by Figures �b and �c�

��



DEF grid� � Bezier�S���c�
c���

MAP��CONS�grid����Domain�� 
 Domain����

Figure �
 The simplicial complexes generated by the MAP operator on the

grid�� grid� and grid� maps given in Example ����

Example ��� �Surface interpolation of curves
 The curve maps c� and c�

are here trans�nitely interpolated by a Sur� mapping via cubic Hermite� with the

further constraints that the tangent vectors along the �rst curve are constant and

parallel to ��� �� ��� whereas along the second curve are also constant and parallel

to ��� ������ The resulting map

Sur� 
 ��� ��� � E�

has unique representation as

Sur� � c� 
�
�

� c� 
�
�

� ������ ����� ����� 
�
�

� ������ ����� ������ 
�
�
�

Such a map is very easily implemented by the following PLaSM de�nition� A

simplicial approximation Sur���� of the point�set Sur����� ���� is generated by the

MAP expression and is shown in Figure 
�

DEF Sur� � Hermite��S��� c�
c�
�	
	
��
�	
	
��� ��

MAP� �CONS�Sur��� �Domain��� 
 Domain�����

Example ��� �Surface interpolation of curves
 A di�erent surface interpol�

ation of the two plane curves c� and c� is given by the following script� where the

boundary tangent vectors are constrained to be constant and parallel to ��� �� ��

and ����������� respectively� Some pictures of the resulting surface are given

in Figure ��

��



Figure �
 Some pictures of the surface interpolating two plane Hermite

curves with constant vertical tangent vectors along the curves�

DEF Sur� � Hermite��S���c�
c�
��
�
��
���
��
�����

MAP� �CONS�Sur��� �Domain��� 
 Domain�����

Figure �
 Some pictures of a new surface interpolating the same Hermite

curves with constant oblique tangent vectors�

��� Threevariate volume by cubic blending of surfaces

Generation of threevariate curved volume by cubic Hermite interpolation of ex�

treme surfaces is explored in this section� At this purpose �rst two new curves�

with quite small variations with respect to those of Section ��� are given� together

with their interpolating surface Sur��

DEF cc�a � Hermite��S�����
	
	���
�	
�
	���
�	
�
	�
���
	
	���

DEF cc�a � Hermite��S����	��
	
��
�	
	��
��
�	
�
��
���
	
	���

DEF Sur� � Hermite��S���cc�a
cc�a
��
�
��
���
��
�����

Then a cell�decomposed polyhedral subset SubDom� � U � ��� ��� � E� is

de�ned� A simplicial decomposition of it is shown in Figure �a� Finally a cu�

bic threevariate Hermite map Vol� 
 U � E� which interpolates with constant

��



normal vectors the surfaces sur� and sur� is given� The graph of the simpli�

cial mapping Vol����SubDom���� produced by the MAP expression� is shown in

Figure �b�

DEF SubDom� � Domain�� 
 Domain�� 
 �	��Domain����

DEF Vol� � Hermite��S���sur�
sur�
��
�
��
���
��
�����

MAP� �CONS�Vol��� SubDom� �

Another straightforward example of curved subset produced by this threevari�

ate Hermite mapping is given by �rst producing a boundary subset SubDom� of

the unit standard interval U � ��� ��� � E�� In this case

SubDom� � ��� ��� ��� ��� f�� �g 
 ��� ��� f�� �g � ��� ��

is de�ned by four boundary faces� Then such domain subset is � � � to the same

Vol� 
 U � E� mapping� The domain subset and the result of the mapping are

shown in Figure �c and Figure �d� respectively� It is easy to notice that such

a mapping produce a self�intersecting deformed volume� Notice also that �	 is

the PLaSM denotation for the extractor operator of the ��skeleton of a polyhedral

complex �����

DEF SubDom� � STRUCT��

Domain�� 
 Domain�� 
 �	��Domain���


Domain�� 
 �	��Domain��� 
 Domain�� ��

MAP� �CONS�Vol��� SubDom� �

Example ��� �Wing section grid
 DEF c� � Hermite��S����	
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�	
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����

DEF c� � Hermite��S����	
	�
��	
	�
�	
���
��
�����

DEF b� � Hermite��S������
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���
	�
�	
���
�	
������

DEF b� � Hermite��S������
	�
���
	�
�	
����
�	
�����

DEF Norm �fun���IsSeq� � ���yu�den
 xu�den�

WHERE

xu � S��fun�
 yu � S��fun�
 sqr � ID 
 ID


den � MySQRT���AA�sqr����yu
 xu�


MySQRT � IF��EQ��K�	
ID�
 K�	
 SQRT�

END�

��



Figure �
 Arguments and corresponding graphs of a threevariate trans��

nite cubic Hermite map ��� ��� � E� which interpolates two given bivari�

ate �surface� maps�

Figure �
 Arguments and corresponding graphs of a threevariate trans��

nite cubic Hermite map ��� ��� � E� which interpolates two given bivari�

ate �surface� maps�

Figure �
 Figure of the grid decomposition of the �eld domain of the

wing�

��



DEF dom� � T����E����Domain�����

DEF dom� � T����E����Domain�����

DEF graph� �f��IsSeq� � MAP��CONS�f��dom��

DEF graph� �f��IsSeq� � MAP��CONS�f���dom� 
 dom���

DEF grid� � Hermite��S���c�
b�
Norm�c�
Norm�b���

DEF grid� � Hermite��S���c�
b�
Norm�c�
Norm�b���

�STRUCT�CAT���AA�graph���grid�
grid��
 AA�graph���c�
c�
b�
b����

� Conclusion

Trans�nite blending of parametric geometry was presented here in a generalized

but very simpli�ed conceptual and computational framework� Such an approach

lacks of e�cient evaluation paradigms� like recursive subdivision� Also� our cur�

rent implementation of the language is not so e�cient as one would like� Anyway�

the total balance of programming� modeling and evaluation times is highly posi�

tive� and great improvements can be forecast� Among the graphics applications

of this approach to be fully explored we cite the �trans�nite� morphing of para�

metrically generated geometric objects� Please try and enjoy"
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List of PLaSM symbols

Function Use Value

MAP MAP�VectFun�dom graph of simplicial map

CONS CONS��f�
���
fn� �f�
���
fn�

�f�
���
fn� �f�
���
fn��x �f��x
���
fn�x�

� f�x apply f to x

� �g � f��x g��f�x�

� � 
 � �g � f��x g�x � f�x

K K�a�x a �for any x�

S� S���a
b
c
d� a

QUOTE QUOTE��x�
���
xn� �D polyhedron

� ��n�x �x
���
x� �n times�

CAT CAT���a�
�b
c�
��
�d�� �a
b
c
d�

ID ID�x x �for any x�

AA AA�f��x�
���
xn� �f�x�
���
f�xn�

TRANS TRANS����
�
��
�a
b
c�� ���
a�
��
b�
��
c��

DISTL DISTL��x
�a
b
c�� ��x
a�
�x
b�
�x
c��

LEN LEN��x�
���
xn� n

IF IF��p
f
g��x if �p�x�true� f�x else g�x

IsSeq IsSeq���
�
�� True

IsFun IsFun�K True

IsInt IsInt��	 True

STRUCT STRUCT��pol�
���
poln� polyhedral complex

�	 �	�pol ��dim polyhedron

Keyword Use Meaning

DEF DEF name �params��pred� � body function de�nition

WHERE WHERE local defs END local functional envrmnt

� name � body local de�nition

body expression value

expression last value
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