=
@)
=
>

UNIVERSITA DEGLI STUDI DI RoMA TRE
Dipartimento di Informatica e Automazione

Via della Vasca Navale, 79 — 00146 Roma, Italy

—
)
™

>,

Transfinite Blending Made Easy

ALBERTO PAOLUZZI

RT-DIA-40-99 Febbraio 1999

Universita “Roma Tre”,
Via della Vasca Navale, 79
00146 Roma, Italy.

This work was partially supported by MURST.

Email: paoluzzi@dia.uniroma3. it

ABSTRACT

In this paper transfinite interpolation/approximation is discussed. This is a pow-
erful approach to generation of curves, surfaces and solids (and even higher dimen-
sional manifolds) by blending lower dimensional geometric objects. Transfinite
blending, e.g. used in Gordon-Coons patches, is well known to mathematicians
and CAD people. It is presented here in a very simple conceptual and compu-
tational framework, which leads such a powerful modeling to be easily handled
by the non mathematically sophisticated user of graphics techniques. Transfinite
blending is discussed in this paper by making use of a very powerful and simple

functional language for geometric design.

1 Introduction

Parametric curves and surfaces, as well splines, are usually defined (see e.g. [3])
as vector-valued functions generated from some vector space of polynomials or
rationals (i.e. ratio of polynomials) over the field of real numbers. In this paper
it is conversely presented an unified view of curves, surfaces, and multivariate
manifolds as vector-valued functions generated from the same vector spaces, but
over the field of polynomial (or rational) functions itself. This choice implies
that the coefficients of the linear combination which uniquely represents a curved
mapping in a certain basis are not real numbers, as usually, but vector-valued
functions.

This approach is a strong generalization, which contains the previous ones as
very special cases. For example, the standard approach of Hermite interpolation
for curves, where two extreme points and tangents are interpolated, can so be
applied to surfaces, where two extreme curves of points are interpolated with as-
signed derivative curves, or even to volume interpolation of two assigned surfaces
with assigned normals. Notice that such an approach is not new, and is quite
frequently used in CAD applications, mainly to ship and airplane design, since
from the times that Gordon-Coons patches were formulated [5, 7]. It is sometime
called function blending [7, 9], or transfinite interpolation [8, 6].

Transfinite interpolation, that the author preferes to call transfinite blending,
because it can also be used for approximation, is usually quite hard to handle
by using standard imperative languages (usually the aged, lovely and fashioned
Fortran). In particular, it is quite difficult to be abstracted, and too often ad
hoc code must be developed to handle the specific application class or case. A
strong mathematical background is also needed to both implement and handle
such kind of software. This fact strongly discouraged the diffusion of such a
powerful modeling technique outside the close neighbourhood of automobile, ship
and airplane shell design.

The original contribution of this paper was both in using a general algebraic
setting which simplifies the description of transfinite blending by the use of func-
tions without variables, and in embedding such an approach into a modern func-
tional computing environment [11], where functions can be easily multiplied and
added exactly as numbers. This results in an amazing descriptive power when

dealing with parametric geometry. Several examples of this power are given in the

paper. Consider, e.g., that multivariate transfinite Bezier blending of any degree
with both domain and range spaces of any dimension is implemented (Section 3.2)
with 11 lines of quite readable source code.

Last but not least, in the paper we limited our exposition to Bézier and
Hermite cases for sake of space. Actually the same approach can be applied to
any kind of parametric representation of geometry, including splines. Notice in
particular that different kinds of curves surfaces and splines can be freely blended,

so giving a kind of design freedom rarely seen before.

2 Background

2.1 Parametric geometry

Parametric representation of geometric objects is concerned with a mapping ¢

between normed vector spaces X and Y, where
o:U Y, UcCX.

In most useful cases both X and Y are the support of Euclidean spaces, say
E? and K9, with p < ¢, which can be identified with X and Y, respectively.
® is often used as a simplicial mapping. This one is applied to some simplicial
decomposition ¥ of the domain U to generate a simplicial approximation ®()
of the image set ®(U) C Y. For example, an approximation with linear triangles
of a parametric surface embedded in 3D is the common output of the modeling
process of such a surface.

The generation of a smooth picture of the curved object ®(U/) C Y is usually
left to the graphics hardware used for rendering. [llumination and shading tech-
niques are there applied to either the colors or the normals of the vertices of ¢(X)
to generate a picture of ®(U/) with the appropriate appearance of smoothness.

If the dimension of the domain space X is p = 1, then the geometric object
®(U) is a curve embedded in a g-dimensional space. If p = 2, then ®(U) is a
surface embedded in a g-dimensional space. With ¢ = 2,3 the set ®(U) is either

a plane curve/surface or a space curve/surface, respectively.

2.2 Some PLaSM elements

PLaSM is a geometry-oriented extension of a subset of the functional language FL

4

developed by Backus, Williams and others at IBM Research [1, 2]. In the PLaSM
language design the powerful algebraic approach to programming of FL was com-
bined with a dimension-independent treatment of embedded data structures and
geometric algorithms [10, 4, 12]. For sake of readibility, a table with the meaning
of the few language constructs used in this paper is given in the Appendix.

A primitive MAP construct is given in PLaSM to generate a simplicial approxi-

mation ®(X) of the point-set ®(U), with & : U — E?
MAP:VectFun:Dom

where VectFun is a CONSed component-wise expression of a parametric mapping,

of the kind
CONS :< ®y,..., B, >

which evaluates to the vector-valued mapping function
¢4+ ...+P, =P suchthat & :X(Dom) — E7,

and where Dom is a cell decomposition of any polyhedral subset of /. The seman-
tics of a MAP expression is the following: (a) a simplicial complex ¥(Dom) which
decomposes the Dom polyhedron is generated; (b) the function VectFun is applied
to all vertices of such simplicial complex, so generating a simplicial approxima-
tion ®(X(Dom)) of the result. Clearly, VectFun must have so many component
functions as the dimension of the target space FY.

Some transfinite Bézier and Hermite maps are given as examples in the paper,
by using only a minimal PLaSM subset. For a description of syntax and semantics
of the language the reader is referred to [11]. Notice that “:” and “~” stand for
function application and composition. Such PLaSM notations closely correspond

to the standard functional notations, so that

(g ~ £):x stands for (go f)(x).

Notice also that the operators “+7, “—7 “x” and “/” denote algebraic operations

between either numbers or functions. As usual, with standard mathematical

notation:

(f +9)(w) = f(u) +g(u), (fg)(u) = f(u)g(u), and so on.
The corresponding PLaSM notation would be:

(f+g):u=f:u+g:u, (f*g):u=~f:u*g:u, andsoon.

5

The selector functions S1, S2, ..., Sn are applied to sequences, and respec-
tively select the first, second and n-th component of the sequence they are applied
to:

S52:<a,b,c,d >=b.

Finally notice that the predefined K function is a very useful constructor of con-
stant functions, and will be largely used in the sequel. With standard functional

notation and with PLaSM notation, we have, respectively:

kla)(z) = (k(a))(z) =a for any =,

K:a:x=(K:a):x=a for any x.

3 Generating geometry in function spaces

Parametric maps ® : U — Y used in Computer Graphics and CAD usually belong
to the space of rational (i.e. ratio of polynomials) functions of bounded integer
degree n. Since the space Z,, of such functions is a finite-dimensional vector space
over the field Z, itself, then each ® € Z, can be expressed uniquely as a linear
combination of n + 1 basis functions ¢; € Z,, with coordinate functions y; € Z,,,
so that

b = oo+ -+ XnPn-

Hence a unique coordinate representation

® = (x0,--sXn)5

of the mapping is given, after a basis B = {¢o,...,¢,} C Z, has been chosen.
The power basis, the cardinal (or Lagrange) basis, the Hermite basis, the Bern-
stein/Bézier basis and the B-spline basis are the most common and useful choices
for such a basis.

The coordinate functions y; may be easily generated, as will be explained
in the following subsections, by using the “geometric handles” of the mapping,
usually data points p; € Y, to be interpolated or approximated by the set ®(U).

Only greek letters, either capitals or lower-case, will be used in the sequel to
denote functions. Please notice that B and H are also greek upper-case letters

for B and n, respectively.

3.1 Univariate case

Let consider the simple univariate case ® : U C X — Y, where the dimension
p of domain X is one. To generate the coordinate functions y; it is sufficient to

transform each data point p; € Y into a constant vector-valued function, so
Xi = k(pi), where k(p;):U =Y 1uw p;.

Using the functional notation with explicit variables, the constant function is
such that

£(pi)(u) = pi
for each parameter value u € U. The (higher-level) constructor K of such constant

functions plays a fundamental role in PLaSM, as well as in its parent language FL,

as will be shown in Example 3.1.

Example 3.1 (Cubic Bézier curve in the plane) The cubic Bézier plane curve
depends on four points p0,pl,p2,p3 € E?, which are given as formal parame-
ters of the function Bezier3 which generates the ® mapping. The local functions
b0,b1,b2,b3 implement the Bernstein/Bézier basis functions 37 = (i)uk(l —
u)>=F, 0 <k <3.

DEF Bezier3 (pO,pl,p2,p3::IsSeq) =
[(x:p0 * b0) + (x:pl * bl) + (x:p2 * b2) + (x:p3 * b3),
(y:p0 * b0) + (y:pl * bl) + (y:p2 * b2) + (y:p3 * b3)]

WHERE
b0 = ul * ul * ul,
bl = K:3 *x ul * ul * u,
b2 = K:3 *x ul *x u * u,

b3 =u *x u * u,

K"S51, y = K"S2, ul = K:1 - u, u = S1

X
END;

The x and y functions, defined as composition of a selector with the constant
function constructor K, respectively select the first (second) component of their
argument sequence and transform such a number in a constant function.

A polygonal approzimation of the Bézier curve with 20 line segments is finally

generated by evaluating the expression

MAP: (Bezier3:<<0,2>,<1,2>,<1,0>,<2,0>>): (Domain:20);

where a 1D polyhedral complex which subdivides the [0,1] interval into n adjacent
line segments is generated by the PLaSM function:

DEF Domain (n::IsIntPos) = QUOTE:(#:n:(1/n));

3.2 Multivariate case

When the dimension p of the domain space X is greater than one, two main
approaches can be used to construct a parametric mapping ®. The first approach
is the well-known “tensor-product” method; the second approach corresponds to

“function blending”, also called “transfinite blending”.

Tensor-product method In tensor-product method, both coordinate func-
tions (generated by data-points) and basis functions can be arranged into tensors
XM and @™o depending on p indices. The mapping function is so given

by the scalar product of such function tensors:

— N 1yeeaTip qbnlw“vnp — E . . qb R
@ - X - Xll,...,lp 11 qeeeylp®

120,.m
tp=0,...,np
More importantly, each multivariate basis function is generated by tensor product

from the univariate basis of the same kind:

Qbil,...,ip(ula cee 7up) = Qbil (ul)qbzé(u?) e qbip(up)

A well-known example is that of bicubic Bézier surface patches in three-space,
where U = [0,1]%, p =2, ¢ = 3 and n; = ny = 3.

Transfinite blending method Let consider a multivariate mapping @ : U —
Y, where U C X and X is a p-dimensional space. Since ® depends on p param-
eters, in the following will be denoted as ®7.

In transfinite blending ®" is computed by linear combination of n, + 1 maps
(depending on p — 1 parameters) with the univariate basis of degree n,. In other

words:

R Ty

The coordinate representation of ® with respect to the basis B = (oo, ..., ¢5,)
is so given by n, + 1 maps depending on p — 1 parameters:

o = (o7, 000)

As an example of transfinite blending consider the generation of a bicubic
Bézier surface mapping B(u1,uz2) as a combination of four Bézier cubic curve
maps Bg(ug), with 0 < k < 3, where some curve maps may possibly reduce to a

constant point map:
3
Blui,uz) =) Bi(ur) Biluz)
k=0

where
3 _
@W%=Q>fﬂ—w3ﬂ 0< k<3,
is the Bernstein/Bézier cubic basis. Analogously, a three-variate Bézier solid body
mapping B(ug, uz, us), of degree ns on the last parameter, may be generated by
univariate Bézier blending of surface maps By(u1,uz2), some of which possibly

reduced to a curve map or even to a constant point map:

B(ul,u2,u3) = Z Bk(u17u2) 623(u3)

k=0

The more interesting aspects of such approach are flexibility and simplicity.
Conversely than in tensor-product method, there is no need that all component
geometries have the same degree, and even neither that were all generated us-
ing the same function basis. For example, a quintic Bézier surface map may be
generated by blending both Bézier curve maps of lower (even zero) degree to-
gether with Hermite and Lagrange curve maps. Furthermore, it is much simpler
to combine lower dimensional geometries (i.e. maps) than to meaningfully assem-
bly the multi-index tensor of control data (i.e. points and vectors) to generate

multivariate manifolds with tensor-product method.

Transfinite Bézier blending The amazing descriptive power of the PLaSM
functional approach to geometric design is made evident here, where transfinite
Bézier blending of any degree is implemented in few lines of code, by easily
combining coordinate maps which may depend on any number of parameters.
Notice in fact that the Bézier function given here can be used to blend points

to give curve maps, to blend curve maps to give surface maps, to blend surface

maps to give solid maps, and so on. Notice also that the given implementation
is independent on the dimensions p and ¢ of domain and range spaces X and Y.

At this purpose, first a small toolbox of related functions is needed, to com-
pute the factorial n!, the binomial coefficients (?), the Bernstein/Bézier functions
B(u) and the B(u)(n) Bernstein basis of degree n, with

B(u)(n) = {85 (u), B{ (), ..., 5, (u)}

DEF Fact (n::IsInt) = *:(CAT:<<1>, 2..n>);
DEF Choose (n,i::IsInt) = Fact:n / (Fact:i * Fact:(n-1));
DEF Bernstein (u::IsFun)(n::IsInt)(i::IsInt) =

*~ [K: (Choose:<n,i>) ,**~ [ID,K:1], **~[-~[K:1,ID],K:(n-1)]] u;

DEF BernsteinBase (u::IsFun)(n::IsInt) = AA:(Bernstein:u:n):(0..n);

Then the Bezier:ufunction is given, to be applied on the sequence of ControlData,
which may contain either control points pg or control maps CI)i_l. In the for-
mer case each component of each control point is firstly transformed into a
constant function. The body of the Bezier:u function just linearly combines
component-wise the sequence (xx) of coordinate functions generated by the ex-
pression (TRANS~fun) :ControlData with the basis sequence (3}) generated by
BernsteinBase:u:degree, where the degree n equates the number of geometric

handles minus one.

DEF Bezier (u::IsFun) (ControlData::IsSeq) =
(AA: (+7AA:*"TRANS) ~ DISTR):
< (TRANS™fun) :ControlData, BernsteinBase:u:degree >
WHERE
degree = LEN:ControlData - 1,
fun = (AAYAA):(IF:<IsFun,ID,K>)
END;

It is much harder to explain in few words what actual argument to pass (and
why) for the formal parameter u of the Bezier function. As a rule of thumb let
pass either the selector S1 if the function must return a univariate (curve) map,
or S2 to return a bivariate (surface) map, or S3 to return a threevariate (solid)

map, and so on.

Example 3.2 (Bézier curves and surface) Four Bézier curve maps C1, C2,
C3, and C4 of degrees 1,2,3 and 2 are respectively defined as:

10

DEF CO

Bezier:51:<<0,0,0>,<10,0,0>>;

DEF C1 = Bezier:51:<<0,2,0>,<8,3,0>,<9,2,0>>;
DEF C2 = Bezier:51:<<0,4,1>,<7,5,-1>,<8,5,1>,<12,4,0>>;
DEF C3 = Bezier:51:<<0,6,0>,<9,6,3>,<10,6,-1>>;

It may be useful to notice that the control points have three coordinates, so that
the generated maps C1, C2, C3, and C4 will have three component functions. Such

maps can be blended with the Bernstein/Bézier basis to produce a cubic bivariate

(surface) mapping:
B(us, uz) = CO(u1) g (uz) + C1(ur) 37 (uz) + C2(ur) B3 (uz) + C3(u1) 55 (us).

Such a linear combination of coordinate functions with the Bézier basis (this time
working on the second coordinate of points in U domain) is performed by the

PLaSM function Supl, defined in the following, by using again the Bezier function:
DEF Surfl = Bezier:52:<C0,C1,C2,C3>;

A simplicial (in this case with triangles) approzimation of the surface B([0,1]?) C
E? is finally generated by evaluating the PLaSM expression

MAP: (CONS:Surfil): (Domain:20 * Domain:20);

Notice that the primitive function CONS, applied to the sequence of component
functions generated by evaluating Surfl, produces a single vector-valued function.
According to the semantics of the MAP operator, CONS:supl is applied to all ver-
tices of the automatically generated simplicial decomposition ¥ of the 2D product
polyhedron (Domain : 20 x Domain : 20) C E%. A simplicial approzimation B(X)
of the surface B([0,1]?) C E? is finally produced.

The four generating curves and the generated cubic transfinitely blended sur-
face are displayed in Figures 1a and 1b. It is possible to show that such surface
interpolates the four boundary curves defined by the extreme control points, ex-
actly as in the case of tensor-product method, but obviously with much greater

generality, since any defining curve may be of any degree.

4 Transfinite Hermite interpolation

The cubic Hermite univariate map is the unique cubic polynomial H : [0,1] — E?

which matches two given points pg, p; € F? and derivative vectors tg,t; € R? for

11

Figure 1: (a) Graphs of the four Bézier curve maps cO(uy), c1(uy), c2(uq)
and c3(uy); (b) graphs of cO(u;) and ¢3(uy) together with the two Bézier
maps bi(uz) and b2(uz) generated by the extreme control points; (c)

graph of the surface Suri(uy,usz), joined to the graphs of the previous

curves.

u = 0,1 respectively. Let denote as H(3) = (n3,n},n5,n3) the cubic Hermite
function basis, with
it 0] =R, 0<i<3,

and such that
no(u) = 2u=3u*+1, nl(u) =3u’ 2>, nj(u) = u’—2u*+u, ni(u) =u’—u’.
Then the mapping H can be written as

H = xong+x1ml+x2 s+ X375
= k(po) mo + £(p1) i + £(te) m5 + £(t1) 3.

It is easy to verify, for the univariate case, that:

H(0) = wlpo)(0) = po, H(1) = s(pr)(1) = pr.
1(0) = x(t0)(0) = .

and that the image set H([0,1]) is the desired curve in F9.
The multivariate transfinite Hermite map H? is easily defined by allowing the

coordinate functions (xx),, to be any map depending on at most p—1 parameters.

Cubic transfinite Hermite implementation A cubic transfinite Hermite3

mapping is implemented in PLaSM, where four data objects are given as formal

12

parameters. Such data objects may be either points/vectors, i.e. sequences of
numbers, or 1/2/3/n-variate maps, i.e. sequences of (curve/surface/solid/etc)

component functions, or even both, as will be shown in the following examples.

DEF Hermite3 (u::IsFun) (pl,p2,tl,t2::IsSeq) =
(AA: (+7AA:*"TRANS)"DISTL):
<<h0,h1,h2,h3>, (TRANS”fun):<p1,p2,t1,t2>>

WHERE
hO = k:2 *x u3 - k:3 *x u2 + k:1,
hl = k:3 *x u2 - k:2 * u3,
h2 = u3 - k:2 *x u2 + u,
h3 = u3 - u2, u3 = wku*xu, u2 = u*u,

fun = (AATAA) : (IF:<IsFun,ID,K>)
END;

4.1 Bivariate surface by cubic blending of curves

Example 4.1 (Grid generation) Two Hermite curve maps c1 and c2 are de-
fined, so that the 3D curves c1([0,1]) and c2(]0,1]) are restrained to z = 0 plane.

DEF c1
DEF c2

Hermite3:51:<<1,0,0>,<0,1,0>,<0,3,0>,<-3,0,0>>;
Hermite3:51:<<0.5,0,0>,<0,0.5,0>,<0,1,0>,<-1,0,0>>;

Some different grids are eastly generated from the plane surface which in-
terpolates the curves cl1 and c2. At this purpose it is sufficient to apply the

Hermite3:S2 function to different tangent curves.

DEF d = (AA:-"TRANS):<c2,cl>;

DEF gridl = Hermite3:52:<c1,c2,d,d>;
DEF grid2 = Hermite3:52:<c1,c2,<-0.5,-0.5,0>,d>;
DEF grid3 = Hermite3:52:<c1,c2,<51:4,-0.5,0>,d>;

The grids generated by maps gridl, grid2 and grid3 are shown in Figure 2.
The tangent map d is simply obtained as vector difference of the curve maps ci
and c2.

It is interesting to notice that the map gridl can be also generated as linear
(transfinite) Bézier interpolation of the two curves. Clearly the solution as cubic

Hermite is more flexible, as it is shown by Figures 2b and Z2ec.

13

DEF gridl = Bezier:52:<cl,c2>;
MAP: (CONS:grid1l) : (Domain:8 * Domain:8);

Figure 2: The simplicial complexes generated by the MAP operator on the
gridl, grid2 and grid3 maps given in Example 4.1.

Example 4.2 (Surface interpolation of curves) The curve maps c1 and c2
are here transfinitely interpolated by a Sur2 mapping via cubic Hermite, with the
further constraints that the tangent vectors along the first curve are constant and
parallel to (0,0,1), whereas along the second curve are also constant and parallel
to (0,0,—1). The resulting map

Sur2:[0,1)* — E?
has unique representation as
Sur2 = c1 ny + 2 7} + (£(0), £(0), £(1)) 1 + (£(0), 5(0), £(—1)) 5.

Such a map s very easily implemented by the following PLaSM definition. A
simplicial approzimation Sur2(X) of the point-set Sur2([0, 1]*) is generated by the

MAP expression and is shown in Figure 3.

DEF Sur2 = Hermite3:52:< ¢1,c¢2,<0,0,1>,<0,0,-1> >;
MAP: (CONS:Sur2): (Domain:14 * Domain:14);

Example 4.3 (Surface interpolation of curves) A different surface interpol-
ation of the two plane curves cl and c2 is given by the following script, where the
boundary tangent vectors are constrained to be constant and parallel to (1,1,1)
and (—1,—1,—1), respectively. Some pictures of the resulting surface are given

in Figure 4.

14

Figure 3: Some pictures of the surface interpolating two plane Hermite

curves with constant vertical tangent vectors along the curves.

DEF Sur3 = Hermite3:52:<cl1,c2,<1,1,1>,<-1,-1,-1>>;
MAP: (CONS:Sur3): (Domain:14 * Domain:14);

Figure 4: Some pictures of a new surface interpolating the same Hermite

curves with constant oblique tangent vectors.

4.2 Threevariate volume by cubic blending of surfaces

Generation of threevariate curved volume by cubic Hermite interpolation of ex-
treme surfaces is explored in this section. At this purpose first two new curves,
with quite small variations with respect to those of Section 4.1 are given, together

with their interpolating surface Sur4.

DEF ccla = Hermite3:51:<<1,0,0.6>,<0,1,0.6>,<0,3,0>,<-3,0,0>>;
DEF cc2a = Hermite3:51:<<0.5,0,1>,<0,0.5,1>,<0,1,1>,<-1,0,0>>;
DEF Sur4 Hermite3:5S2:<ccla,cc2a,<1,1,1>,<-1,-1,-1>>;

Then a cell-decomposed polyhedral subset SubDomi C U = [0,1]> C E? is
defined. A simplicial decomposition of it is shown in Figure 5a. Finally a cu-

bic threevariate Hermite map Voll : U — E® which interpolates with constant

15

normal vectors the surfaces sur2 and sur4 is given. The graph of the simpli-
cial mapping Vol1(X(SubDoml)), produced by the MAP expression, is shown in
Figure 5b.

DEF SubDoml = Domain:8 * Domain:8 * @0:(Domain:3);
DEF Voll = Hermite3:83:<sur2,sur4,<1,1,1>,<-1,-1,-1>>;
MAP: (CONS:Voll): SubDoml ;

Another straightforward example of curved subset produced by this threevari-
ate Hermite mapping is given by first producing a boundary subset SubDom2 of
the unit standard interval U = [0,1]*> C E®. In this case

SubDom2 = [0, 1] x [0,1] x {0,1} U [0,1] x {0,1} x [0,1]

is defined by four boundary faces. Then such domain subset is ...to the same
Voll : U — E? mapping. The domain subset and the result of the mapping are
shown in Figure 6¢ and Figure 6d, respectively. It is easy to notice that such
a mapping produce a self-intersecting deformed volume. Notice also that @0 is
the PLaSM denotation for the extractor operator of the 0-skeleton of a polyhedral
complex [12].

DEF SubDom2 = STRUCT:<
Domain:8 * Domain:8 * @0:(Domain:1),
Domain:8 * ©0:(Domain:1) * Domain:8 >;

MAP: (CONS:Voll): SubDom2 ;

Example 4.4 (Wing section grid) DEF c1 = Hermite3:51:<<0,0>,<10,0>,<0,3>,<6,-1>
DEF c2 = Hermite3:51:<<0,0>,<10,0>,<0,-3>,<6,-1>>;
DEF bl = Hermite3:51:<<-5,0>,<15,0>,<0,22>,<0,-22>>;
DEF b2 = Hermite3:S1:<<-5,0>,<15,0>,<0,-22>,<0,22>>;

DEF Norm (fun2::IsSeq) = <-"yu/den, xu/den>
WHERE
xu = S1:fun2, yu = S2:fun2, sqr = ID * ID,
den = MySQRT"+~AA:sqr”[-"yu, xul,
MySQRT = IF:<EQ~[K:0,ID], K:0, SQRT>
END;

16

Figure 5: Arguments and corresponding graphs of a threevariate transfi-
nite cubic Hermite map [0,1]*> — E® which interpolates two given bivari-

ate (surface) maps.

Figure 6: Arguments and corresponding graphs of a threevariate transfi-
nite cubic Hermite map [0,1]*> — E® which interpolates two given bivari-

ate (surface) maps.

Figure 7: Figure of the grid decomposition of the field domain of the

wing.

17

DEF dom1l
DEF dom2

T:1:1E-8:(Domain:24);
T:1:1E-8:(Domain:12);

DEF graphl (f::IsSeq) MAP: (CONS:f) :doml;

DEF graph2 (f::IsSeq) MAP: (CONS:f):(doml * dom2);
DEF gridl = Hermite3:52:<cl,bl,Norm:cl,Norm:bl>;
DEF grid2 = Hermite3:52:<c2,b2,Norm:c2,Norm:b2>;

(STRUCT~CAT) : <AA:graph2:<gridl,grid2>, AA:graphl:<cl,c2,bl,b2>>;

5 Conclusion

Transfinite blending of parametric geometry was presented here in a generalized
but very simplified conceptual and computational framework. Such an approach
lacks of efficient evaluation paradigms, like recursive subdivision. Also, our cur-
rent implementation of the language is not so efficient as one would like. Anyway,
the total balance of programming, modeling and evaluation times is highly posi-
tive, and great improvements can be forecast. Among the graphics applications
of this approach to be fully explored we cite the (transfinite) morphing of para-

metrically generated geometric objects. Please try and enjoy!

Acknowledgment

I am indebted with Chris Hoffmann for asking some years ago if PLaSM, initially
designed for polyhedral modeling in building design, could also manage curved
geometries. This question started me thinking about the functional background
of the language and discovering its amazing descriptive power when dealing with
parametric geometry. I would also like to thank Luigi Morino and Umberto
l[emma for posing a challenging problem of transfinite interpolation related to
avionic design.

The complete implementation of the methods and examples here discussed is
given in this paper by using PLaSM [11]. The interested reader is referred to the
language pages at URL http://www.dia.uniroma3.it/plasm. All the figures
were produced on a Macintosh PowerPC by grabbing the pictures generated by
Intervista WorldView VRML plug-in for Netscape Navigator. VRML files are the

common output from the PLaSM interpreter.

18

References

1]

3]

[9]

Backus, J. “Can Programming Be Liberated from the Von Neumann’s
Style? A Functional Style and its Algebra of Programs”. Communications of

the ACM, 21(8): 613-641, August 1978. (ACM Turing Award Lecture).

Backus, J., WiLriamMs, J.H. AND WIMMERS, E.L. “An Introduction to
the Programming Language FL”. In Research Topics in Functional Program-

ming, D.A. Turner (Ed.), Addison-Wesley, Reading, MA, 1990.

BARTELS, R.H., BEATTY, J.C. AND BARSKY, B.A. “An Introduction
to Splines for Use in Computer Graphics & Geometric Modeling”. Morgan

Kaufmann, Los Altos, CA, 1987.

BERNARDINI, F., FERRUCCI, V., PAOLUZZI, A. AND Pascucct, V. “A
Product Operator on Cell Complexes”. Proc. of the ACM/IEEE 2nd Conf.
on Solid Modeling and Appl., ACM Press, 43-52, February 1993.

Coons, S.A. “Surfaces for Computer-Aided Design of Space Forms”.
Tech. Rep. MAC-TR-41, MIT, Cambridge, 1967.

GOLDMAN, R.N. “The Role of Surfaces in Solid Modeling”. In Geometric
Modeling: Algorithms and New Trends, G.E. Farin (Ed.), STAM Publications,
Philadelphia, Pennsylvania, 1987.

GorDON, W.J., “Blending function Methods of bivariate and multivari-

ate interpolation and approximation”. Res. Rep. GMR-834, General Motors,
Warren, Michigan, 1968.

GORDON, W.J., “Spline-blended Surface interpolation through curve net-
works”. J. Math. Mech., 18:931-952, 1969.

LANCASTER, P. AND SALKAUSKAS, K. “Curve and Surface Fitting. An
Introduction”. Academic Press, London, UK, 1986.

[10] PaoLuzzi, A., BERNARDINI, F., CarrTani, C. AND FERRUCCI, V.

“Dimension-Independent Modeling with Simplicial Complexes”. ACM Trans.
on Graphics, 12(1):56-102, January 1993.

19

[11] PaoLuzzi, A., Pascucct, V., AND VICENTINO, M. “Geometric pro-

gramming: a programming approach to geometric design”. ACM Trans. on

Graphics, 14(4):266-306, July 1995.

[12] Pascucct, V., FERrRrucct, V., AND PaoLruzzi, A. “Dimension-
Indipendent Convex-Cell based HPC: Skeletons and Product”. International
Journal of Shape Modeling, 2(1):37-67, January 1996.

20

List of PLaSM symbols

Function Use Value
MAP MAP:VectFun:dom graph of simplicial map
CONS CONS:<fq,...,f;> [(f1,...,f,]
(fy,...,f,1 | [f1,...,f.]:x <fiix,...,fix>

f:x apply f to x
- (g ~ £):x g: (£:x)
+ - % / (g + £):x g:x + f:x
K K:a:x a (for any x)
S1 S1:<a,b,c,d> a
QUOTE QUOTE:<xy,...,X> 1D polyhedron
#:n:x <x,...,x>(n times)
CAT CAT:<<a>,<b,c>,<>,<d>> <a,b,c,d>
1D ID:x x (for any x)
AA AA:f:<xy,...,x,> <f:ixq,...,f:x,>
TRANS TRANS:<<1,2,3>,<a,b,c>> <<1,a>,<2,b>,<3,c>>
DISTL DISTL:<x,<a,b,c>> <<x,a>,<x,b>,<x,c>>
LEN LEN:<xq,...,%,;> n
IF IF:<p,f,g>:x if (p:x=true) f:x else g:x
IsSeq IsSeq:<1,2,3> True
IsFun IsFun:K True
IsInt IsInt:10 True
STRUCT STRUCT :<poly,...,pol,> polyhedral complex
Q0 Q@0:pol 0-dim polyhedron
Keyword Use Meaning
DEF DEF name (params: :pred) = body | function definition
WHERE WHERE local defs END local functional envrmnt
= name = body local definition
body expression value

expression last_value

21

