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ABSTRACT

In this paper is described a set of possible implementations of the autonomous agents
concept in flexible manufacturing. Development of intelligent systems to improving man-
ufacturing productivity needs good software modeling approaches to support efficient
design and control. Software design concepts based on object-oriented programming are
emerging as powerful techniques for developing large scale software systems. This paper
presents important features of object-oriented design tools and their relevance in modeling
and developing software for Autonomous Agents Manufacturing Systems.
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1 Introduction

Production systems are distributed systems working in a dynamic environment. A recent
approach providing a decomposed and modular framework is based on the paradigm of
autonomous agent (AA) (Jennings, and Wooldridge, 1998; Barber, et al., 1998), in which
the process is the result of decision of several entities each pursuing its individual goal,
without a global decision maker.

The autonomous agents concept suggests basic ways of dealing with complex systems,
such as the decomposition approach (Uzsoy, and Ovacik, 1997). The concept generalizes
and integrates other alternative control and scheduling architectures (i.e. cooperative
systems, heterarchical structures, object-oriented programming, real time negotiation of
resource assignment, and opportunistic scheduling) designed to meet the complexity as
well as the distributed nature of the process (Lin, and Solberg, 1992). The authors
propose a framework for parts flow management based on a negotiation protocol among
parts and other resources. The effectiveness of the approach has been verified by means
of simulation experiments (Adacher, et al., 1999).

In the organization of the factory, it is natural to identify the agents with the elements
having a certain amount of behavioral autonomy, be it a department, an office, a machin-
ing center, a single worker or a workpart (Adiga, 1989; Blazewicz, et al., 1998; Pinedo,
and Yen, 1997).

The AA concept goes one step beyond distributed control. Sequencing rules (Morton, and
Pentico, 1993) are widely used in the manufacturing practice, due to their simplicity and
relative efficiency. However, a traditional shop floor driven by sequencing rules cannot be
considered an AA structure, for two main reasons. First, the workload of a machining
center is typically assigned by an external dispatcher, and usually machining centers can-
not react to it (Talavage, and Hannam, 1988). Second, no real cooperation or negotiation
takes place among the agents. The AA structure calls for a different idea of establishing
the workload of the centers. This assignment may be the result of a bargaining phase in
which the task to be accomplished plays the role of the client asking for a service and the
agents dispute among them the right (or the duty) to serve the client.

Agents selection is not a simple mechanical process, since it typically requires insights that
can be achieved only through a thorough understanding of the system (Bongaerts, et al.,
1996). Of course there is not a unique right way of designing and building Autonomous
Agent Systems (AAS). Actually, the agent selection phase may be easy, whereas the hard
part of the work is to ensure effective communication between agents without destroying
their autonomy (Muller, 1997).

This paper presents an approach to design, not a complete design method. The approach
presented here can be used as the basis of different formalizations. AAS development
may be viewed as an iterative and incremental process. At each step of this process,
the main aspects of AAS development (analysis, implementation, evaluation, testing,
documentation and management) are refined and specified in more detail.

Section 2 presents the five AA paradigms proposed. These paradigms differ from each
other for the amount and complexity of information exchanged, negotiation mechanism,
implementation requirements and algorithmic aspects. These elements allow to compare
systems having different degrees of autonomy (Adacher, et al., 1999).

Section 3 describes data structures and implementation of a simulation system that have
been carried out to evaluate our paradigms. An outline of the Unified Modeling Language



(UML) conceptual model of proposed paradigms is shown. The aim is to describe an
architectural framework emphasizing the role of object-oriented modeling in ensuring
modularity and reusability and introduce the features of the UML, which is the emerging
standard for object-oriented conceptual modeling (Douglass, 1998; Booch, 1994; Quatrani,
1998).

An increasing number of software tools for modeling and designing intelligent agents and
multi-agent systems is now available (Norman, et al., 1997; Jennings, and Wooldridge,
1998). These tools exploit the analogy between the notion of autonomy (in AAS) and
that of encapsulation in object oriented programming (OOP) (Barber, 1998; Barber, et
al., 1998).

In manufacturing, autonomous agents can be naturally identified with the subjects that
physically interact with the surrounding environment through sensors and effectors, sim-
ilarly to the definition given by Russell and Norvig (1995). As a consequence, a key
aspect of the implementation of the autonomous agents concept is the trade-off between
the amount and the detail of the information available to the agent and the quality of its
decisions.

In fact, in principle each agent can be provided with a large amount of information
concerning the status of the overall system, but this may be physically infeasible. For
instance, consider the machines and the parts as agents in a shop floor. Upon completion
of a task, a part may decide on which machining center should it be processed next. In
principle, to select the best decision, several elements should be considered, including the
characteristics of the parts scheduled on a certain machine, the processing requirements
of these parts, their subsequent routing, machine speed and tooling etc.

Conveying such detailed information to each part may be impossible, because of commu-
nication and computational overhead. This is in fact a major problem in many centralized
architectures. On the other hand, a careful choice of the actually relevant pieces of in-
formation may point out that the agents can still work satisfactorily, even without a full
knowledge of the whole system.

Most of the dispatching rules commonly used in manufacturing only make sense in a
centralized environment, in which a detailed monitoring of the overall system evolution is
available (Pinedo, and Yen, 1997). The paradigms presented in this paper focus on two
peculiar features of AAS, namely (i) the limited availability of data concerning the rest of
the system and (ii) the concept of negotiation, which allows the agents to react to locally
unprofitable situations.

2 AA-Based FMS: paradigms implementation

In this paper three types of agents are considered, one related to machines (Machine
Agent, MA), one to part storage (Storage Agent, SA) and the other related to parts (Part
Agent, PA). Five different implementations of routing and scheduling mechanisms in an
autonomous agents framework are presented. For each of them, the interaction among
agents when a Part Agent requires to be processed are described. This occurs when a
part enters the system, completes an operation or when a machine breaks down.



2.1 Simple_Traffic_Light (STL).

On the basis of its actual workload, each MA declares its own availability to process further
parts, by displaying a red (busy) or green (free) signal. The part visits the machines one
at a time, starting from the closest one. The first encountered machine showing a green
signal will take care of the part. The relevant information for routing (green or red signal)
only flows from the machine to the part. In this case, no negotiation takes place.

This is the simplest operating mode. Each machine displays tooling information, that can
be read by any PA. A MA accepts a new part (green signal) if and only if there is room in
the input buffer of the machine. Obviously, this paradigm only applies when buffer size
is limited.

2.2  Conditional Traffic_Light (CTL).

This paradigm is like the previous one, except that the PA provides part information (e.g.
processing time, due date etc.) to the MA, and the MA replies by a green or red signal on
the basis of the part characteristics. As before, the first encountered machine showing a
green signal will process the part. Hence, the information flows bidirectionally, first from
the part to the machine and then viceversa. This bidirectional flow can be viewed as a
form of negotiation, in which the MA has the final word.

Two different implementations of this paradigm are considered. The first is denoted as
CTLw (CTL-workload). Let W be the current workload of a machine, i.e., the total work-
load of the parts actually in the input buffer of the machine. In the second implementation
CTLt (CTL-tardiness), the acceptance decision is made on the basis of tardiness consid-
erations. Precisely, a machine accepts a part if this does not increase the estimated total
tardiness of the parts currently in its input buffer (computed by arranging the parts in
decreasing order of slack time). Otherwise, the machine will display a red signal.

2.3 Conditional _Traffic_Light&Exchange (CTLE).

The same as CTL, but in this case the machine agent has a further negotiation option,
consisting in possibly trading one of the parts in its buffer for the new part. The rejected
part will have to start again looking for a machine.

The same as CTLw and CTLt, but this time, when a part is rejected by all machines,
the part will start again asking for service. At this point, each machine will compare
the maximum slack time of the parts in its buffer (i.e., the slack time of the least urgent
part) with the slack time of the part asking for service. If the latter is smaller, the
machine exchanges the least urgent part for the new part. Otherwise, the part waits in
the Unfinished Parts Storage buffer for its turn.

2.4 Part_Machine_Contracting (PMC).

The PA provides its information to all machines, and each machine elaborates its own
price, which is a local surrogate for global performance indices. Such price depends on both
the part characteristics and the machine status (workload, tooling, efficiency etc.). Hence,
the part selects the machine offering the best price. The information flows bidirectionally
between the part and each machine. In this negotiation mode the final decision is left
with the part.



The PA provides its information to all machines, and each machine elaborates its own
price. Such price depends on several parameters. Let T denote an estimate of the total
tardiness of the batches to which the parts in its buffer belong to. If the new part is
accepted, this may increase the tardiness, and we let AT denote such difference (possibly
zero). After querying each MA, the PA selects the MA offering the lowest price.

The price is obtained as a linear combination of these four indices (in decreasing order
of importance): AT; the number of parts in the input buffer; a variable which is 1 if the
machine is currently working on some part and 0 otherwise; a variable which is 1 if a part
is presently on its way to the machine and 0 otherwise.

2.5 Part_Machine_Contracting&Exchange (PMCE).

In this paradigm, the PA may decide to select no machine, if all the prices are too high.
In this case, the MAs may be asked to elaborate a new price, allowing to give away one
of the parts currently in the buffer (as in CTLE).

3 Conceptual Modeling of Autonomous Agents in
the simulation framework.

The UML is meant to be applicable to the modeling of all types of systems, it applies
well to standard software applications, real-time systems and also to AAS development.
Hence, the proposed paradigms may be conveniently illustrated using a visual modeling
tool based on UML (Unified Modeling Language) (Douglass, 1998).

The documentation partially reported in this section refers to the FMS simulator devel-
opment. UML defines a visual notation based on various types of diagrams (i.e. Class Di-
agram, Use-Case Diagram, Sequence Diagram, Collaboration Diagram, Activity Diagram
and State Diagram). A diagram is a particular visualization of certain kinds elements
from a model and generally deals only a subset of the detailed information about those
elements and a given model element might appear on several diagrams.

e (Class Diagram shows the important abstractions in a system and their relation-
ships. Hence, the primary visual elements in a class diagram are class icons and
relationship icons. Each class are represented in the UML as a rectangle with three
compartments. The first compartment is for the name of the class; the second and
third compartment are used to list the attributes and methods defined by the class.
Most classes (representing agents) in a system will be related to other classes so that
their corresponding agents can collaborate to accomplish more complex activities.
So in addition to classes, attributes, and methods, class diagrams also show relation-
ships that exist among dependent classes. The UML notation distinguishes between
different types of relationships, each with a special icon and associates meanings (i.e.
uni/bi-directional association, dependency, aggregation, inheritance)

o Use-Case Diagram is a natural high level description of how a system will be used
and provides a view of the intended functionality of the system that is understand-
able by developers and customers. A single use-case diagram represents many re-
lated yet distinctly scenarios (particulars paths through the system functionality).
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Figure 1: Layout of the simulated FMS.

e Sequence Diagram provides notation for modeling scenarios. Sequence diagrams use
object icons and vertical time-lines projected downward on the diagram (the time
flows from the top of the diagram). Messages passed between objects are represented
by horizontal lines. Scripts may explain one or more messages and, for real-time
designs, exact timing often must be specified.

e (Collaboration Diagram is another notation for modeling scenarios. The sequence
information (i.e. the order in which the messages are sent) is associated to messages
by a progressive number. In this diagrams the structure is more prominent, but the
event sequence are more obvious in the sequence diagrams.

e State Diagram shows the sequences of states for a reactive class or interaction during
its life in response to some signal, together with its responses and actions. It provides
a visual model of states (i.e. nested, sequential and complex states), transitions and
events.

o Activity Diagram is a specialized form of state diagram in which most of all transi-
tions are taken when the state activity is completed.

The development and implementation of the simulation framework as an iterative and
incremental process (from simplest paradigm STL) promotes creativity and, in the same
time, it must be controlled and measured to ensure high quality in the proposed solutions.
Each iteration consists of different components: requirements capture, analysis, design,
implementation and test. Not all requirements are known at the beginning of the life
cycle but they may change dynamically throughout all phases.

Of course, each of these paradigms may be implemented in different ways depending on
the real system characteristics.

The experimental environment is a sample Flexible Manufacturing System (FMS) with
four machining centers connected by means of an automated material handling system. In
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Figure 2: UML Class Diagram for the FMS simulator

a centralized control architecture, the controller (on the basis of the system status and the
production plan) makes decisions and sends commands to each single system component.
The large number of decisions, data and possible system states makes the development of
a centralized controller a very complex task. The adoption of an autonomous agents-based
architecture may avoid some of these problems (Shaw, 1989; Smith, 1980).

The five paradigms proposed in the previous section have been implemented and evaluated
in a computer simulation prototype (Adacher, et al., 1999). The system consists of four
machining centers (each with its own input buffer), a transportation system and an I/0O
center, as depicted in figure 1.

The 1/O Center loads raw parts (from a raw materials storage unit), unloads finished
parts, and handles unfinished parts. A Storage Agent (SA) is associated with the 1/O
Center, letting the raw parts in the system in EDD (earliest due date) order. Others
SAs are associated with the Finished Parts, Raw Materials and Unfinished Parts. Each
machining center is associated with a Machine Agent (MA). Each machine has its own
tools and may therefore perform a set of operations. The model refers to a time interval
during which tooling does not change. Note that each operation may be executed by
different centers.

The informative unit of a MA takes care of part sequencing and the computation of prices.
Machine Agents do not directly negotiate work with the other MAs.

A Part Agent (PA) is created when a new physical part is released in the system. The
PA retains both the physical and informative characteristics of the part, as long as the
part is in the system. The informative unit of a PA keeps track of the actual status of the
part. Part Agents may occasionally broadcast a limited amount of information to other

PAs.
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When the part completes the last operation and leaves the system, a record with the
relevant part information is passed onto a monitoring system, and the PA is destroyed.
Unlike MAs, PAs are supposed to be unable to communicate among themselves. This is
mandatory, in order to keep the information overhead sufficiently low. Since the analysis
is focused on the coordination of agents, part transfer is supposed not to be a critical
issue in this model, i.e., transportation facilities (modeled by a unidirectional loop) are
supposed always available when needed.

In figures 2 through 6, UML diagrams associated with the proposed paradigms are de-
picted. These diagrams do not contain all implementation details, they simply mean to
sketch the information exchange among agents and their implementative structure.

In figure 2 is depicted the Class Diagram with objects and relationships adopted in the
simulation environment.

In the Sequence Diagrams (figures 3 and 4) vertical lines indicate temporal axes (events
occur from top to bottom of the diagram), horizontal arrows express interaction between
agents over time (e.g. processing request and data exchange). Self-loops indicate indi-
vidual processing activities (e.g. price computation). Phases marked with an asterisk are
repeated as long as the condition in square braces holds. Figures 3 and 4, corresponding
to STL and PMC respectively represent a particular scenario refers to a part entering the
system and searching for a machine to perform the first operation. For the subsequent
operations, the diagrams are almost identical. The further negotiation step may occur
with CTLE and PMCE paradigms.

Examples of State and Activity diagrams are shown in figures 5 and 6 for the PMC
paradigm and for the same previous scenario.
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4 Conclusions

Object orientation is playing an increasing role in the development of many real-time
software systems. It is been recognized for some time that modeling is one of the important
ingredients contributing to a successful development project.

The unified modeling language (UML) has become increasingly significant as a means
of modeling software systems. UML is seen as the principal OO modeling language by
many developers and vendors. It is being widely applied to the practice of software
development in a variety of industries and for differing applications. Its development
continues to evolve.

Real-time manufacturing systems are often complex systems. Developing software for real-
time systems is a complex process. Modeling provides a mechanism that helps developers
to understand the inherent complexity of real-time systems and to design relevant and
successful solutions to real-time problems.

In this context visual modeling laguages, and software tools that supporting them may
play an important role. This paper presents important features of object-oriented design
tools focusing on their relevance in modeling and developing software for Autonomous
Agents Manufacturing Systems.
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