Ry
O
<

Mm>

P

UNIVERSITA DEGLI STUDI DI ROMA TRE
Dipartimento di Informatica e Automazione
Via della Vasca Navale, 79 — 00146 Roma, Italy

The alternative graph
formulation for solving complex
factory scheduling problems

DARIO PACCIARELLI

RT-DIA-52-2000 March 2000

Universita Roma Tre,
Via della Vasca Navale, 79
00146 Roma, Italy.

ABSTRACT

The adaptation of the academic job shop scheduling model to industrial practice is well
known to be rich of difficulties, due to the gap between scheduling theory and scheduling
practice. On the other hand, several authors observed that the disjunctive graph formu-
lation of Roy and Sussman is more robust than the job shop model itself. In fact, the
disjunctive graph can be easily adapted to deal with many practical issues. In this paper
we move a step forward in the direction of generalizing the existing mathematical models,
in order to capture relevant aspects of complex factory scheduling problems. We consider
an extension of the disjunctive graph, that we call an alternative graph. It allows to
model in a precise way, and to solve effectively, a number of complex practical scheduling
problems for which there were no successful methodologies, so far. Several examples are
presented and a complex industrial application, arising in the production of steel, is pro-
vided. Finally, we discuss the performance of a new fast heuristic both on real data and
on several instances from the literature on the job shop scheduling problem.

1 Introduction

The job shop scheduling problem is the problem of allocating machines to competing jobs
over time, subject to the constraint that each machine can handle at most one job at a
time. A considerable number of algorithmic improvements have been carried out in the
past thirty years for solving the academic version of the job shop problem (see, for example,
Adams, Balas and Zawack (1988), Applegate and Cook (1991), Carlier and Pinson (1994),
Nowicki and Smutnicki (1996). Most of these works are based on the disjunctive graph
formulation of Roy and Sussman (1964). On the other hand, the adaptation of the
academic job shop scheduling model to industrial practice is rich of difficulties, due to a
number of additional constraints that make it unsuitable for solving industrial problems.
Several authors observed that the disjunctive graph formulation of Roy and Sussman
can be easily adapted to deal with many practical issues (see, for example, White and
Rogers, 1990, and Schutten, 1998). A strong limitation that still remains in these models
is that they disregard the behavior of the jobs between consecutive operations. In other
words, with the disjunctive graph formulation it is necessary to assume that intermediate
buffers have infinite capacity and that a job can be stored for an unlimited amount of
time. In fact, there are a number of practical situations in which buffer capacity has
to be taken into account, at least at some stages of the production process, and there
may be also limits on the amount of time that a job can spend in a buffer between two
consecutive operations. Examples of such situations arise in many different industrial
settings, such as in the production of steel (see, e.g. Dorn and Shams, 1996, Lixin Tang
et al., 2000), concrete wares (Grabowski, Pempera and Smutnicki, 1997), and chemical
products (Reklaitis, 1982).

In this paper, we use the alternative graph model of Mascis and Pacciarelli (2000) for
modeling the above cited constraints. The alternative graph is based on a generalization
of the disjunctive graph of Roy and Sussman. With the alternative graph formulation it is
possible to model in a precise way, and to solve effectively, a number of complex practical
scheduling issues for which there were no successful methodologies, so far. In particular
we cite the maximum storage time for a job, or even for a pair of consecutive operations
in a job, the buffer capacity for a machine, i.e. the maximum number of jobs which can
be stored in the buffer at the same time, the unavailability of the machines in some given
time intervals, and the specification of non-relaxable time windows for the operations.

The paper is organized as follows. In Section 2 a review of related works is given.
In Section 3 we introduce the notation and the alternative graph formulation. Then, we
formulate several practical issues by means of small examples and report on a complex
scheduling problem arising in the production of steel. In section 4 we present a new
fast heuristic procedure for determining a good solution and discuss its performance.
Conclusions follows in Section 5.

2 Literature review

In this section we briefly review the applications and the literature related to our work.
In the literature on machine scheduling a number of extensions of the traditional job shop
model have been studied. For example, White and Rogers (1990) discuss the adaptation
of the disjunctive graph formulation of Roy and Sussman (1964) to deal with several

practical problem feautures, such as assembly and disassembly sequences, set ups, due
dates, release times, maintenance operations, material handling delays and many other
operational side constraints. Ovacik and Uzsoy (1992,1997) and Schutten (1998) extended
the shifting bottleneck procedure of Adams, Balas and Zawack (1988) to deal with such
practical features.

A different research direction focuses on several scheduling problems for which the
disjunctive graph model is not suitable. Among these problems we cite the job shop
scheduling with limited capacity buffers. Hall and Sriskandarajah (1996) model the ab-
sence of intermediate buffers as a blocking constraint. In this case a job, having completed
processing on a machine, remains on it until the next machine becomes available for pro-
cessing. Mc Cormick et al. (1989) study a flow shop scheduling problem in an assembly
line having finite capacity buffers between machines. They model the positions of the
intermediate buffers as machines with zero processing time. The problem with limited
buffers can be therefore studied as a blocking problem where all machines have no inter-
mediate buffers.

Other relevant cases in which the job shop model with unlimited buffers is not suitable
arise in the management of perishable items. A commodity is said to be perishable if
some of its characteristics are subject to deterioration with respect to customer/producer
requirements. This field of applications has been mainly studied in the framework of
inventory theory (see, e.g. Nahmias (1982)). In practice, as shown by Arbib, Pacciarelli
and Smriglio (1999), product decay often occurs also at some particular stages of the
production process, this decay depending both on the product and on the production
step. In these cases, finding adequate scheduling policies is critical for maximizing the
throughput while reducing losses and costs due to perishing. The perishability issue is
approached in various ways in the literature on scheduling, but most of the scheduling
models adopted for this kind of productions typically suffer from lack of information. For
instance, an approximation often introduced, when scheduling perishable goods with high
decay rate, is the introduction of tight no—wait constraints (see for example Grabowski,
Pempera and Smutnicki, 1997, Hall and Sriskandarajah, 1996, or Pinedo, 1995). A no-
wait constraint occurs when two consecutive operations must be performed without any
interruption. We refer the reader to Hall and Sriskandarajah (1996) for an extensive
survey on machine scheduling problems with blocking and no-wait in process.

Additional extensions of the job shop problem, considered by various authors, concern
release and due dates for the jobs, and the availability of the machines. In the latter case a
machine can process jobs only during prespecified time windows. These two extensions can
be jointly considered by specifying some non-relaxable time windows for the operations,
i.e. earliest/latest possible start time windows. This problem has been extensively studied
in the form of a constraint satisfaction problem by several researchers from the field
of Artificial Intelligence (see, for example, Sadeh, Sycara and Xiong (1995)). Further
extensions of the job shop with unlimited buffers can be found, for example, in the book
of Ovacik and Uzsoy (1997) and in the survey of Strusevich (1997).

3 Notation and problem definition

In this section we introduce the notation and a more precise specification of the problem
under consideration. In the usual definition of the job shop problem a job must be

processed on a set of machines. The sequence of machines for each job is prescribed, the
processing of a job on a machine is called an operation and cannot be interrupted.

In this paper we focus on the sequencing of operations rather than jobs. We have there-
fore a set of operations N = {0, 01, . . ., 0, } to be performed on m machines {mq, mo, ..., m,,}.
Each operation o; requires a specified amount of processing p; on a specified machine M (i),
and cannot be interrupted from its starting time ¢; to its completion time ¢; = t; + p;. 0
and o, are dummy operations, with zero processing time, that we call “start” and “finish”
respectively. Each machine can process only one operation at a time.

There is a set of precedence relations among operations. A precedence relation (i, j)
is a constraint on the starting time of operations o;, with respect to ¢;. More precisely,
the starting times of the successor o; must be greater or equal to the starting time of the
predecessor o; plus a given delay f;;, which in our model can be either positive, null or
negative. A positive delay may represent, for example, the fact that operation o; may
starts processing only after the completion of o;, plus a possible set-up time. A delay
smaller or equal to zero represents a synchronization between the starting times of the
two operations. Finally, we assume that oy precedes o4, ..., 0,, and o, follows oy, ..., 0,_1.

Precedence relations are divided into two sets: fized and alternative. Alternative
precedence relations are partitioned into pairs. They usually represent the constraints
that each machine can process only one operation at a time.

A schedule is an assignment of starting times tg, 1, ..., %, to operations og, 01, ..., 0,
respectively, such that all fixed precedence relations, and exactly one for each pair of the
alternative precedence relations, are satisfied. W.l.o.g. we assume ¢, = 0. The goal is to
minimize the starting time of operation o,,. This problem can be therefore formulated as
a particular disjunctive program, i.e. a linear program with logical conditions involving
operations “and” (A, conjunction) and “or” (V, disjunction), as in Balas (1979).

Problem 3.1

min t,
s.t. tj — t7; Z f7] (Za]) € F
(tj — t7; Z (17;‘7') V (tk - th, Z ahk) ((Z,]), (ha k)) € A

Associating a node to each operation, Problem 3.1 can be usefully represented by the
triple G = (N, F, A) that we call alternative graph. The alternative graph is as follows.
There is a set of nodes N, a set of directed arcs F' and a set of pairs of directed arcs A.
Arcs in the set F' are fized and f;; is the lenght of arc (i,7) € F. Arcs in the set A are
alternative, and a;; is the lenght of the alternative arc (i, 7). If ((7,7), (h, k)) € A, we say
that (7, 7) is the alternative of (h, k). In our model the arc lengths can be either positive,
null or negative.

A schedule is obtained by selecting exactly one arc from each alternative pair, in such
a way that no positive length cycle are generated in the resulting graph. The makespan
of the schedule is the length of a longest path from node 0 to node n in this graph.

The alternative graph is a generalization of the disjunctive graph of Roy and Sussman
(1964). In fact, in the disjunctive graph the pairs of alternative arcs (called disjunctive
arcs) are all in the form (7, j), (j,?), where i and j are two operations to be processed on
the same machine.

In the remaining part of this section we briefly illustrate the alternative graph model
of some typical constraints arising in scheduling problems, then we describe a complex
application of the alternative graph, arising in the steelmaking industry.

Let us first consider a pair of consecutive operations in a job, say o; and o;, and
assume that o; must start processing within & time units after the completion of o; (i.e.,
t; < ti+p; + k). We call it perishability constraint, since it represents the fact that
a job deteriorates when stored for more than k time units between the two consecutive
operations. We can represent this constraint with a pair of fixed arcs (i,7) and (j,1)
having length p; and —p; — k, respectively. If £ = 0 we have a tight no-wait constraint
(see Figure 1).

-pi -k

Figure 1: Perishability constraint

Let us now consider the blocking constraint, which is used to model the absence of
storage capacity between machines. In the rest of this paper, we will distinguish two
types of operations, namely ideal and blocking. We say that an ideal operation o; remains
on machine M(j) from its starting time to its completion time and then leaves M (j),
which becomes immediately available for processing other operations. On the contrary, a
blocking operation o, may remain on machine M (i) even after its completion time, thus
blocking it. More precisely, in our model:

1. Each blocking operation o; is associated to the subsequent operation in its job,
hereafter called 04;).

2. o;, having completed processing on machine M (i), remains on it until the machine
M (o (7)) becomes available for processing o0,(;. Machine M (i) remains therefore
blocked, and cannot process any other operation, until o; leaves M (7).

The alternative graph model of this constraint is as follows. Consider two operations
o; and o;, where o; is blocking, and such that M (i) = M(j).

Since o; and o; cannot be executed at the same time, we associate with them a pair of
alternative arcs. Each arc represents the fact that one operation must be processed before
the other. If o; is processed before o;, and since o; is blocking, M (i) can start processing
o; only after the starting time of o,(;, when o; leaves M (¢). Hence, we represent this
situation with the alternative arc (o (i),) having length a,(;); = 0. The other alternative
arc depends on the fact that o; can be either blocking on not. If o; is blocking, then we
add the alternative arc (o(j),4) of length a,(;; = 0. If o; is ideal, then we add the arc
(7,7), whose length is aj; = p;. In Figure 2 (a) and 2 (b) the case of 0; blocking and
o; ideal, respectively, is shown. Here the fixed [alternative| arcs are depicted with solid
[dashed] lines.

In Figure 3 the alternative graph formulation for a blocking flow shop with three jobs
and four machines is depicted. Note that a job, having completed processing on the last
machine, leaves the system. Hence, the last machine is not blocking.

Besides the cited examples, the alternative graph allows to formulate situations by far
more general that the ones we have mentioned. Among the others, we cite the specification

i Qg0 dli) i O———Qali)
\\\ 9/// ? ///
L1 p: i e
O G0
O 2000 i O
J
(@) (b)

Figure 3: The alternative graph for a blocking flow shop with three jobs and four machines.

of non-relaxable earliest-latest starting times for the operations, assembly and disassembly
sequences, set ups, due dates, release times, maintenance operations, material handling
delays and many other operational side constraints. We refer to White and Rogers (1990)
and to Mascis and Pacciarelli (2000) for more general examples.

In the rest of this section we deal with one such industrial application, arising in the
production of steel. The purpose of this example is to show how complex scheduling
problems can be formulated by means of the alternative graph. Hence, in what follows
we will give only a brief introduction and formulate a simplified version of the problem.

3.1 Production scheduling in a steelmaking plant

High grade steelmaking plants produce a great variety of steel grades to be used in a
number of applications. Lot sizes are typically small, and the production process is subject
to a number of complex metallurgical requirements in order to achieve suitable properties
on the final product. The production scheduling problem consists of determining the
sequencing of operations to be performed on molten steel at the different production
stages from steelmaking to continuous casting. We will refer in particular to a line for
the production of stainless steel, situated in a steelmaking plant in central Italy. Figure
4 shows the layout of the production line. The production process consists of a sequence
of high temperature operations starting with the loading of scrap iron in a Electric Arc
Furnace (EAF). The time to melt the scrap iron ranges from 70 to 80 minutes, including
a few minutes for set-up and furnace maintenance operations.

The liquid steel is then poured into ladles that a crane transports to a subsequent
machine, called Argon Oxygen Decarburation unit (AOD), where nickel, chromium and
other elements are added to the steel in order to meet the chemical quality requirements.

LF
Scrap Buffer
iron EAF | =) _T]| AoD QHQ cc | &) Sabs

Figure 4: Layout of the stainless steel production line

Between EAF and AOD there is room for storing up to three ladles but, since the stored
steel cools down, it must be reheated in the AOD, adding extra costs. After the AOD
the ladles are transported to a Ladle Furnace (LF) which can host at most two ladles.
Even if some operations are executed in the LF, in practice it acts as a buffer to maintain
the ladles at the proper temperature before the last operation, to be executed in the
continuous caster (CC). Here the liquid steel is casted and cooled to form slabs. The
CC needs to be tooled with a particular tool, called flying tundish, which determine the
format of slabs. If two subsequent ladles belong to the same lot, they must be casted
without interruption, otherwise the tundish deteriorates, and a set-up is necessary in
order to substitute it. However, the tundish must be changed anyway when switching
from a lot to another, as well as after a given number of identical ladles, which depends
on the steel quality. The size of a lot may vary, therefore, from 1 to 7 ladles. The set-up
time needs about 60 minutes, during which the CC is blocked. Finally, the time horizon
for a planning period is one week, which corresponds to about an average of 120 ladles
(jobs) and 30 lots.

The scheduling problem can be modeled as a permutation flow shop with limited
buffers and three additional constraints:

e all parts in a lot must be sequenced consecutively,

e there is a sequence independent set-up time on the last machine (CC) between two
consecutive lots,

e there is a no-wait constraint between any two consecutive casting operations in the
same lot.

The problem is to find a sequence of lots maximizing the production rate of the plant
during a week. There is also the secondary goal of reducing the amount of time spent
by the ladles in the first buffer, between EAF and AOD, even if the primary objective
pursued by the schedulers in the plant is to minimize the completion time of all lots.

In Figure 5 the alternative graph corresponding to a lot with three ladles is reported.
The processing of a ladle is a chain of 8 nodes. The first one corresponds to the starting
time of the heating operations in the EAF, the next three nodes represents the three
positions of the subsequent buffer, the fifth node is associated to the processing in AOD
unit, the sixth and seventh nodes are associated with the LF, and the eighth is the casting
operation. The pair of arcs between two consecutive casting operations represents the no-
wait constraint on the CC. The set-up time on the continuous caster is represented in
Figure 5 by increasing the weight on the arc outgoing the last node. The diagonal arcs
having length € represents the blocking constraints. The weight € represents the fact that
all movements in the plant are performed by a single crane. Hence, a ladle can move to
the next machine only € time after that the machine has been emptied.

ff/“ “
i

Figure 5: The graph representation for a lot with three ladles

Given a pair of lots we formulate the capacity constraint of the machines by adding
an alternative pair of arcs for each machine (including buffer positions). Notice that all
machines but the CC here are blocking machines. The complete alternative graph for two
lots is reported in Figure 6. Here the first lot has 3 ladles and the second lot has 2 ladles.
Fixed [alternative] arcs are depicted with solid [dashed] lines. Each pair of alternative
arcs represent the constraint that the last operation in a lot, to be executed on a given
machine, must precede the first operation of the other lot to be executed on the same
machine, or viceversa.

Figure 6: The alternative graph for two lots

4 Heuristics

In this section we deal with a new heuristic procedure for finding good complete consistent
selections, given a general alternative graph.

In the first part of this section we describe our procedure and compare its results with
other greedy algorithms from the literature. In the scond part of this section we report on
several experiments on real data, referring to the steelmaking plant described in Section
3.1.

In order to describe the procedure we need the following notation. Given an Alterna-
tive graph G = (N, F, A), a selection S is a set of arcs obtained from A by choosing at

most one arc from each pair. The selection is complete if exactly one arc from each pair
is chosen. Given a pair of alternative arcs ((,7), (h,k)) € A, we say that (i,7) is selected
in S if (z,7) € S, whereas we say that (i,j) is forbidden in S if (h,k) € S. Finally, the
pair is unselected if neither (i, j) nor (h, k) is selected in S.

Given a selection S, let G(S) indicate the graph (N, DUS). A selection S is consistent
if the graph G(.S) has no positive length cycles. Given a consistent selection S, we say
that (i,) is implied by S if its alternative arc (h, k) would cause a cycle if added to G(S).
An eztension of S is a complete consistent selection S’ such that S C 5’ if it exists.
With this notation each schedule is associated with a complete consistent selection on the
corresponding alternative graph.

We are now in the position of describing Algorithm AMCC (Avoid Maximum Current
Chax). It is based on the idea of repeatedly enlarging a consistent selection, given a
general alternative graph in the form of Problem 3.1, and concluding either with a feasible
solution or with a non consistent selection. In particular AMCC selects one arc at a time
and then adds to the selection all the implied arcs, in order to preserve consistency as
long as possible. If both arcs in an unselected pair cause a positive length cycle in G(.5),
the procedure fails in finding a feasible solution. The step is repeated until a complete
selection is built or an inconsistency is detected.

In Figure 7, the general sketch of the heuristic is shown. We define [(i, j) as the length
of the longest path in G(S) from node i to node j. We use the convention that if there is
no path from 7 to j, then I(i,j) = +oo.

Algorithm AMCC
Input: Alternative graph G = (N, F, A).

begin
S =0.
While A # () do
begin
Choose a pair ((h, k), (i,7)) € A, such that:
10, h) + ang, + 1(k,n) = max(, y)ea{l(0, w) + ayy +1(u,n)}.
Select (i,7), i.e. S:=SU{(i,)}, A:=A—{((h, k), (i,5))},
If 3((h,k),(i,5)) € A:l(k,h)+ app > 0,1(5,4) + a;; >0
then STOP, the procedure failed in finding a feasible solution,
else while {((u,v), (p,q)) € A: l(v,u) + ay, > 0} # 0 do
begin
S=85U{p.a)} A=A-{((u,v),(p,q)}
(here all arcs implied by S are selected)
end
end
end.

Figure 7: Sketch of the Algorithm AMCC.

At each step AMCC selects an arc (h, k) that, if selected, would improve most the
length of the longest path in G(S). Hence, AMCC forbids it by selecting its alternative

(¢,7)-

10

Note that, when choosing the pair ((h, k), (7,7)) € A, a tight may occur among different
arc pairs. Hence, we developed two versions of AMCC. AMCCI1 chooses, among the pairs
fulfilling the condition [(0,) 4+ apr + l(k,n) = max(,,)ea{l(0,u) + au, + l(u,n)}, the
one such that [(0,7) + a;; + [(j,n) is minimum. AMCC2 chooses the one such that
1(0,7) + a;; + I(j,n) is maximum. In what follows, we call AMCC the best solution found
by AMCC1 and AMCC2.

We tested the performance of the heuristics on a sample of Academic job shop instances
from the literature. Problems Abz5-9 were generated by Adams, Balas & Zawack (1988),
problems Orb1-10 were generated by Applegate and Cook (1991), problems LA1-40 were
generated by Lawrence (1984), and problems Ft6, Ft10 and Ft20 are the three examples
proposed in the book of Muth and Thompson (1963).

In Table 1 we compare the performance of AMCC, over the 58 instances, with all
greedy procedures for which we could find results in the literature. Bidir was proposed in
Dell’Amico & Trubian (1993), INSA was proposed in Nowicki and Smutnicki (1996), BJS
is the initial heuristic used by Brucker, Jurish and Sievers (1994) for their branch and
bound code, and Dspt is the best dispatching solution over five different list schedules, as
reported in the book of Ovacik and Uzsoy (1997). The first column reports the instance
name, the second column reports the number of machines and jobs of the instance, and
in the third column the best known lower bound on the instance is reported. An asterisk
indicates that an optimal solution has been found. From column 4 to column 8 the
solutions found by the five heuristics are reported, and from column 9 to column 13 the
relative errors of the heuristics are computed. The last three rows report the average and
the maximum errors of the different heuristics over all instances, and the average errors
over the 45 common instances, respectively. This computational experience clearly show
that AMCC outperforms the other four heuristics.

From the above results, we can therefore expect good performance from AMCC when-
ever it terminates with a feasible solution. Unfortunately, this is not always the case.
Hence, in what follows, we are interested in finding some conditions under which AMCC
is guaranteed to find a feasible solution. One important case is the well known Academic
job shop problem with infinite capacity buffers, due to the well known property shown in
Proposition 4.1.

Proposition 4.1 Given any instance of the job shop problem with infinite capacity buffers,
for any consistent selection always exists an extension.

Proof. In order to prove Proposition 4.1, it is sufficient to observe that, given a formula-
tion of the job shop problem with infinite capacity buffers, a consistent selection S, and
an unselected pair of alternative arcs ((4,7), (j,7)) € A, it is possible to obtain a larger
consistent selection by adding to S one of the two alternative arcs.

Consider the two selections: S" = S U {(i,7)} and S = S U {(4,49)}. If S’ is not
consistent, then the graph G(S’) contains a cycle including arc (7, j), and therefore G(S5)
contains a directed path from j to i. If S” is not consistent, then the graph G(S”) contains
a cycle including arc (j,1), and therefore G(S) contains a directed path from i to j. These
two paths form a cycle in G(.S), which contradicts the hypothesis that S is consistent. By
repeatedly applying this argument it is possible to obtain an extension of .S. 0

This key property does not hold for a more general situation, e.g. for blocking prob-
lems. A simple example of this fact is given by the flow shop with two jobs and three

11

blocking machines, shown in Figure 8. Here, operations o; and o4 have to be processed on
the same machine, i.e. M(1) = M(4). Moreover, M(2) = M(5), M(3) = M(6), while the
start and finish operations, oy and o7, respectively, are dummy operations. The selection
S =1{(2,4),(6,3)} is consistent but no extension exists in this case since it is not possible
to select one arc from the pair ((3,5), (6,2)) without creating a positive length cycle in
the graph. As a consequence of this fact, we observe that an algorithm based on the idea
of repeatedly enlarging a consistent selection, may fail in finding a feasible solution.

Figure 8: A consistent selection admitting no extensions

On the other hand, from a closer look to the algorithm of Figure 7, we can guarantee
that AMCC terminates with a feasible solution under a weaker property than the one in
Proposition 4.1. In fact, we only need that for any consistent selection S in which all arcs
implied by S are selected, always exists an extension. Note that the selection shown in
Figure 8 does not satisfy this property, since the unselected arc (3,5) is implied by (2,4)
and (6,2) is implied by (6,3). In fact, in this problem, by selecting only one arc, say
(2,4), and the implied arcs (3,5) and (3,6), we immediately get a feasible solution. This
is always the case in the blocking flow shop problems. Also in the steelmaking problem
of Section 3.1 we can ensure that AMCC always finds a feasible selection, and therefore
we can expect good performance in this case.

We tested AMCC on real data provided by a steel company located in central Italy.
The weekly production plan requires to sequence approximately 130 ladles, grouped into
35 lots ranging from 1 to 7 ladles each. We compared the resulting production plan with
the one actually implemented in the plant, and produced by hand. The comparison was
carried out on the basis of a detailed simulator, which is used in the plant to plan the
activities. Since the real processing times of the operations is partially stochastic, we used
in our experiments the mean values for each operation. These are the values used in the
plant to produce the usual weekly plan.

The results of this comparison are shown in table 2. All values are expressed in
minutes. In the first column the makespan of the sequence produced by hand is shown,
while in the second column the makespan obtained by AMCC is reported. Both data
are evaluated with the plant simulator. In the third column the makespan obtained by
AMCC is reported, computed by the algorithm AMCC. We observe that the makespan
evaluated on the alternative graph is extremely close to the makespan evaluated by the
simulator. We can therefore conclude that the alternative graph model of the scheduling
problem includes all the relevant details of the industrial problem. In the fourth column,
a lower bound on the makespan is shown, computed by using the lower bound of Mascis
and Pacciarelli (2000), which proves that AMCC found the optimal solution in this case.

From the comparison of the lower bound with the makespan of the sequence imple-
mented in the plant, it follows that the quality of this sequence is within 2% from the

12

Instance Size LB AMCC Bidir INSA BIJS Dspt % AMCC % Bidir % INSA % BJS % Dspt
| | || | | | | | from LB from LB from LB from LB from LB

Abz5 (10, 10) 1234%* 1318 1359 1381 1379 1366 6.81 10.13 11.91 11.75 10.70
Abz6 (10, 10) 943%* 985 1025 1012 1052 1009 4.45 8.70 7.32 11.56 7.00
Abz7 (15, 20) 655 753 785 — — 785 14.96 19.85 — — 19.85
Abz8 (15, 20) 638 783 804 — — 834 22.73 26.02 — — 30.72
Abz9 (15, 20) 656 77T 821 — — 807 18.45 25.15 — — 23.02
Ft06 (6,6) 55% 55% 56 59 55% 60 0 1.82 7.27 0 9.09
Ft10 (10, 10) 930* 985 1076 994 1090 1088 5.91 15.70 6.88 17.20 16.99
Ft20 (20, 5) 1165* 1338 1310 1269 1454 1272 14.85 12.45 8.93 24.81 9.18
Orb01 (10, 10) 1059* 1213 1281 — — 1269 14.54 20.96 — — 19.83
Orb02 (10, 10) 888* 924 1035 — — 1037 4.05 16.55 — — 16.78
Orb03 (10, 10) 1005* 1113 1214 — — 1198 10.75 20.80 — — 19.20
Orb04 (10, 10) 1005%* 1108 1161 — — 1223 10.25 15.52 — — 21.69
Orb05 (10, 10) 887* 924 1049 — — 1041 4.17 18.26 — — 17.36
Orb06 (10, 10) 1010* 1107 — — — 1307 9.60 — — — 29.41
Orb07 (10, 10) 397* 440 — — — 473 10.83 — — — 19.14
Orb08 (10, 10) 899* 950 — — — 1132 5.67 — — — 25.92
Orb09 (10, 10) 934* 1015 — — — 1136 8.67 — — — 21.63
Orb10 (10, 10) 944%* 1030 — — — 1134 9.11 — — — 20.13
La01 (10, 5) 666* 666* 724 666* 671 735 0 8.71 0 0.75 10.36
La02 (10, 5) 655% 694 739 722 835 756 5.95 12.82 10.23 27.48 15.42
La03 (10,5) 597* 735 710 681 696 671 23.12 18.93 14.07 16.58 12.40
La04 (10, 5) 590* 679 664 659 696 677 15.08 12.54 11.69 17.97 14.75
La05 (10, 5) 593%* 593* 593* 593* 593* 593* 0 0 0 0 0
La06 (15,5) 926%* 926* 940 950 926* 926%* 0 1.51 2.59 0 0
La07 (15,5) 890* 984 946 976 960 960 10.56 6.29 9.66 7.87 7.87
La08 (15,5) 863* 873 984 868 893 939 1.16 14.02 0.58 3.48 8.81
La09 (15,5) 951%* 986 1017 951%* 951%* 1000 3.68 6.94 0 0 5.15
Lal0 (15, 5) 958* 1009 958* 958%* 958* 966 5.32 0 0 0 0.84
Lall (20,5) 1222% 1239 1259 1293 1222% 1222% 1.39 3.03 5.81 0 0
Lal2 (20,5) 1039* 1039* 1044 1044 1050 1039* 0 0.48 0.48 1.06 0
Lal3 (20,5) 1150%* 1161 1160 1154 1189 1150* 0.96 0.87 0.35 3.39 0
Lald (20,5) 1292%* 1305 1294 1328 1292* 1292* 1.01 0.15 2.79 0 0
Lalb (20, 5) 1207* 1369 1304 1323 1363 1343 13.42 8.04 9.61 12.92 11.27
Lal6 (10, 10) 945%* 979 1045 1077 1074 1066 3.60 10.58 13.97 13.65 12.80
Lal7 (10, 10) 784* 800 838 821 849 842 2.04 6.89 4.72 8.29 7.40
Lal8 (10, 10) 848* 916 973 926 926 962 8.02 14.74 9.20 9.20 13.44
Lal9 (10, 10) 842%* 846 941 971 977 947 0.48 11.76 15.32 16.03 12.47
La20 (10, 10) 902* 930 1050 1003 987 980 3.10 16.41 11.20 9.42 8.65
La21 (15, 10) 1046* 1241 1210 1179 1175 1270 18.64 15.68 12.72 12.33 21.41
La22 (15, 10) 927* 1032 1087 1032 1060 1141 11.33 17.26 11.33 14.35 23.09
La23 (15, 10) 1032* 1131 1093 1132 1155 1157 9.59 5.91 9.69 11.92 12.11
La24 (15, 10) 935* 999 1132 1021 1085 1110 6.84 21.07 9.20 16.04 18.72
La25 (15, 10) 977* 1071 1175 1147 1086 1172 9.62 20.27 17.40 11.16 19.96
La26 (20, 10) 1218%* 1378 1355 1397 1342 1425 13.14 11.25 14.70 10.18 17.00
La27 (20, 10) 1235%* 1353 1470 1466 1413 1488 9.55 19.03 18.70 14.41 20.49
La28 (20, 10) 1216%* 1322 1415 1485 1468 1551 8.72 16.37 22.12 20.72 27.55
La?29 (20, 10) 1130 1392 1401 1385 1352 1344 23.19 23.98 22.57 19.65 18.94
La30 (20, 10) 1355* 1476 1493 1463 1577 1547 8.93 10.18 7.97 16.38 14.17
La31 (30, 10) 1784%* 1871 1840 1966 1903 1935 4.88 3.14 10.20 6.67 8.46
La32 (30, 10) 1850%* 1942 1928 1982 1850%* 1881 4.97 4.22 7.14 0 1.68
La33 (30, 10) 1719%* 1897 1802 1767 1766 1870 10.35 4.83 2.79 2.73 8.78
La34 (30, 10) 1721% 1934 1837 1844 1825 1890 12.38 6.74 7.15 6.04 9.82
La35 (30, 10) 1888* 2017 1983 1967 2028 2083 6.83 5.03 4.18 7.42 10.33
La36 (15, 15) 1268%* 1347 1383 1445 1406 1547 6.23 9.07 13.96 10.88 22.00
La37 (15, 15) 1397* 1547 1657 1726 1588 1649 10.74 18.61 23.55 13.67 18.04
La38 (15, 15) 1196%* 1342 1362 1307 1371 1503 12.21 13.88 9.28 14.63 25.67
La39 (15, 15) 1233* 1361 1502 1393 1442 1420 10.38 21.82 12.98 16.95 15.17
La40 (15, 15) 1222% 1340 1389 1387 1417 1422 9.66 13.67 13.50 15.96 16.37
AVRG 8.33 11.86 9.24 10.12 13.95
W.C. 23.19 26.02 23.55 27.48 30.72

AVRG45 7.54 10.34 9.24 10.12 11.65

Table 1: Comparison among AMCC and four heuristics from the literature

optimum. Hence, there is little space for improving it, and therefore we can conclude that
the usage of approximated models is unlikely to produce good results for the steelmaking
process. On the other hand, with the detailed model given by the alternative graph,
AMCC is able to produce a better sequence than the real one.
computing time of AMCC for 35 lots and 130 ladles is limited to a few minutes, the real
sequence is produced with some hours of human work. The production sequence produced

by AMCC was also analysed by the industrial partner that confirmed its validity.

5 Conclusions

Moreover, while the

In this paper we illustrated a wide variety of practical scheduling problems that can be
modeled by means of the alternative graph. We also presented a new fast algorithm,

13

Implemented sequence AMCC AMCC Lower bound
(simulated) (simulated) | (evaluated (evaluated
on the graph) | on the graph)
9328 9138 9126 9126

Table 2: Computational experiments on the real data

useful for finding feasible solutions for many practical problems. Unfortunately, for gen-
eral alternative graphs, AMCC may fail in finding a feasible solution, while it is very
promising for solving those scheduling problems in which it is possible to guarantee that
it terminates with a feasible solution. Relevant academic cases in which this happens are
the job shop problem with infinite capacity buffers, and the blocking flow shop problem.
More important, there are many practical scheduling problems in which AMCC always
terminates with a feasible solution. In the paper we showed a case study arising in the
steel industry, but this in true in general for most industrial flow lines with limited capac-
ity buffers, even in presence of additional side constraints. However, further research is
needed in order to develop effective solution algorithms for more general problems, such
as blocking or no-wait job shop problems, and for developing better heuristics and exact
solution algorithms.

References

[1] Adams, J., E. Balas, and D. Zawack. 1988. The shifting bottleneck procedure for job
shop scheduling, Management Science, 34, 3, 391-401.

[2] Applegate, D. and W. Cook. 1991. A computational study of the job shop scheduling
problem, Orsa Journal on Computing, 3, 2 149-156.

[3] Arbib, C., D. Pacciarelli and S. Smriglio. 1999. A three-dimensional matching model
for perishable production scheduling, Discrete Applied Mathematics, 92, 1-15.

[4] Balas, E. 1979. Disjunctive programming, Annals of Discrete Mathematics, 5, 3-51.

[5] Brucker, P., B. Jurish, and B. Sievers. 1994. A branch and bound algorithm for the
job-shop scheduling problem, Discrete Applied Mathematics, 49, 107-127.

[6] Carlier, J, and E. Pinson. 1994. Adjustment of heads and tails for the job-shop
problem, Furopean Journal of Operational Research, 78, 146-161.

[7] Dell’Amico, M. and M. Trubian. 1993. Applying taboo search to the job-shop schedul-
ing problem, Annals of Operations Research, 41, 231-252.

[8] Grabowski, J., J. Pempera, and C. Smutnicki. 1997. Scheduling in production of con-
crete wares, Operations Research Proceedings 1996 (Braunschweig), Springer, Berlin.
192-196.

[9] Hall, N.J., and C. Sriskandarajah. 1996. A survey on machine scheduling problems
with blocking and no-wait in process, Operations Research, 44, 3, 510-525.

14

[10]

[11]

[12]

[13]

[14]

[21]

[22]

[23]

Lawrence, S. 1984. Supplement to ”Resource constrained project scheduling: an ex-
perimental investigation of heuristic scheduling techniques”, GSTA, Carnagie Mellon
University, Pittsburg, PA.

Lixin Tang, Jiyin Liu, Aiying Rong, and Zihou Yang. 2000. A mathematical pro-
gramming model for scheduling steelmaking-continuous casting production. European
Journal of Operational Research. 120, 423-435.

Mascis, A. and D. Pacciarelli. 2000. "Machine Scheduling via Alternative Graphs”,
Report DIA-46-2000, Dipartimento di Informatica e Automazione, Universita Roma
Tre.

Mc Cormick, S.T., M.L. Pinedo, S. Shenker, and B. Wolf. 1989. Sequencing in an
assembly line with blocking to minimize cycle time, Operations Research, 37, 6,
925-935.

Muth, J.F. and G.L. Thompson (eds.). 1963. Industrial scheduling. Kluver Academic
Publishers.

Nahmias, S. 1982. Perishable inventory theory: a review, Operations Research, 30,
4, 680-708.

Nowicki, E., and C. Smutnicki. 1996. A fast taboo search algorithm for the job shop
scheduling problem, Management Science, 42, 6, 797-813.

Ovacik, I.M. and R. Uzsoy. 1992. A shifting bottleneck algorithm for scheduling
semiconductor testing operations, Journal of Electronic Manufacturing, 2, 119-134.

Ovacik, .M. and R. Uzsoy. 1997. Decomposition methods for complex factory schedul-
ing problems, Prentice-Hall, Englewood Cliffs, NJ.

Pinedo, M. 1995. Scheduling - theory, algorithms and systems, Prentice Hall Int.
Series in Industrial and System Engineering, Englewood Cliffs, NJ.

Reklaitis, G.V. 1982. Review of scheduling of process operations, AIChE Symposium
Series, T8, 119-133.

Roy, B. and B. Sussman. 1964. Les problem d’ordonnancement avec contraintes dis-
jonctives, Note DS No. 9bis, SEMA, Paris.

Sadeh, N.; K. Sycara, Y. Xiong. 1995. Backtracking techniques for the job shop
scheduling constraints satisfaction problem, Artificial Intelligence, 76, 455-480.

Schutten, J.M.J. 1998. Practical job shop scheduling, Annals of Operations Research,
83, 161-177.

Strusevich, V.A. 1997. Shop scheduling problems under precedence constraints, An-
nals of Operations Research, 69, 351-377.

White, K.P., and R.V. Rogers. 1990. job-shop scheduling: limits of the binary disjunc-
tive formulation, International Journal of Production Research, 28 (12), 2187-2200.

15

