A Proof Procedure for Hybrid Logic with
Binders, Transitivity and Relation Hierarchies

Marta Cialdea Mayer

Universita di Roma Tre, Italy

This is a draft version of a paper appearing on the Proceedings of
CADE 2013. It should not be cited, quoted or reproduced.

Abstract

A tableau calculus constituting a decision procedure for hybrid logic
with the converse modalities, the global ones and a restricted use of the
binder has been defined in a previous paper. This work shows how to
extend such a calculus to multi-modal logic equipped with two features
largely used in description logics, i.e. transitivity and relation inclusion
assertions. An implementation of the proof procedure is also briefly pre-
sented, along with the results of some preliminary experiments.

1 Introduction

This work considers multi-modal hybrid languages (see, for instance, [3]) that,
beyond the standard modalities, nominals, the satisfaction operator and the
binder, include the converse modalities (¢} and OF), the global ones (E and
A) and a feature largely used in description logics, i.e. the possibility of declar-
ing an accessibility relation to be transitive and/or included in another one.
Basic hybrid logic (with nominals only, beyond the modal operators <& and O)
will be denoted by HL, and basic multi-modal hybrid logic by HL,,. Logics
extending HL or HL,, with operators O, ...,0,, (and their duals) are denoted
by HL(O,...,0,) and HL,,(O,...,0,), respectively. Multi-modal languages
including transitivity assertions and/or relation hierarchies are denoted in the
same way, just including Trans (for transitivity) and/or C (for relation inclu-
sion) among O1,...,0,.

The satisfiability problem for formulae of any hybrid logic HL(Oy,...,O,)
or HL,,,(01,...,0,) — where O; € {@, &~ E} is decidable [3]. Unfortunately,
due to the high expressive power of the binder, HL({) is undecidable [1, 4].

There are both semantic and syntactic restrictions allowing for regaining
decidability of hybrid logic with the binder. Restricting the frame class is a
way of restoring decidability, but the interplay with multi-modalities (or the
addition of other operators) is not always harmless. For instance, HL(J) over
transitive frames is decidable [18], but HL(@,]) and HL,,({) are not [18, 17].

In [20] it is proved that the satisfiability problem for formulae in HL(@,
1,E,©7) is decidable, provided that their negation normal form contains no

universal operator (i.e. either O or O~ or A) scoping over a binder, that in turn
has scope over a universal operator. Such a fragment of hybrid logic is denoted
by HL(@,],E,<&7) \ OJO. The result is proved by showing that there exists
a satisfiability preserving translation of HL(@, |, E, <)\ O]O into HL(Q, |, E,
&)\ 10, ie. the set of formulae in negation normal form where no universal
operator occurs in the scope of a binder. The standard translation of hybrid
logic into first order classical logic [1, 20] maps, in turn, formulae in HL(@, |, E,
<7)\ O into universally guarded formulae, that have a decidable satisfiability
problem [12].

Decidability of HL,, (@, |, E, &)\ 0,0 can be proved by the same reasoning,
and the separate addition of either relation hierarchies or transitive relations can
easily be shown to stay decidable, by reduction to the first order guarded frag-
ment and by resorting to results already proved in the literature [19]. However,
such results do not directly allow for concluding whether the logic including
both features is still decidable.

This work is a continuation of previous works, where terminating tableau
calculi for decidable fragments of Hybrid Logic with the binder have been de-
fined [8, 9]. In particular, [9] presents a tableau calculus constituting a sat-
isfiability decision procedure for HL(@, |, E, <) \ O40. Such a procedure is
here extended to multi-modal hybrid logic HL,, (@,], E, <&, Trans, C)\ Ol0O: a
tableau calculus is presented, which terminates and is sound and complete for
formulae in the fragment HL,, (@, |, E, &~ Trans, £)\ |0, i.e. formulae in nega-
tion normal form where no occurrence of a universal operator is in the scope of
a binder, with the addition of transitivity assertions and relation hierarchies. A
preprocessing step along the lines of [20] turns the calculus into a satisfiability
decision procedure for the fragment HL,,(@, |, E, &~ Trans, £) \ O}0. Sound-
ness, completeness and termination of the tableaux calculus thus imply that the
satisfiability problem for the fragment of multi-modal hybrid logic HL,,(@,], E,
&7, Trans, C) \ O)0O is decidable. The proof procedure has been implemented
in a prover called Sibyl, which will be briefly presented along with the results of
some preliminary experiments.

The language of HL,,(@, |, E, &~ Trans, C) \ O/0 subsumes the description
logic SHOZ enriched with restricted occurrences of the binder, and allows for
representing some interesting frame properties, such as, for instance, symmetry
(R~ C R), reflexivity (Alz.Ogx), “at most” restrictions on the number of states
(BElzq....Elzn Az V-V x,)), and “at least” restrictions on the number of
R-successors of each state (Alx.Orlyr.(z 1 Or(—y1 Alyz.(x : Or(—y1 A —y2 A
L))

This section concludes with a brief introduction to the syntax and semantics
of multi-modal hybrid logic with transitive relations and inclusion assertion.
Well-formed expressions of HL,,(@, |, E, &~ Trans, C) are partitioned into two
categories: formulae (for which the metasymbols F, G are used) and assertions.

Formulae are built out of a set PROP of propositional letters, a set NOM
of nominals, an infinite set VAR of state variables, and a set REL of relation
symbols (all such sets being mutually disjoint), and defined by the following
grammar:

F:=pla|ax|-F| FANF | FVF | OrF | OrF
| O7F | OpF | EF | AF | a:F | :F | la.F

where p € PROP, a € NOM, x € VAR and R € REL. In this work, the notation

t: F is used (for t € NOM U VAR) rather than @, F. We use metavariables a, b, ¢
for nominals, z,y, z for state variables and R, S, P for relation symbols.

If F is a formula, z a state variable and a a nominal, then Fa/x] denotes
the formula obtained from F' by substituting a for every free occurrence of z (an
occurrence of x is free if it is not in the scope of a Jz). If ag,...,an,bo, ..., by
are nominals, then F'[bg/aq, ... ,by,/ay,] denotes the formula obtained from F' by
simultaneously replacing b; for every occurrence of a;.

Assertions are either transitivity assertions, of the form Trans(R), for R €
REL, or inclusion assertions, of either form RC S or R~ C S, for R, S € REL.
Here, R~ is intended to denote the inverse of the relation denoted by R, i.e.
the set of pairs of states (w,w’) such that (w’,w) is in the relation denoted by
R. Note that inverse relations are allowed only on the left of the T symbol.
This is only a syntactical restriction, since R~ C .S~ is equivalent to RC S, and
RC S~ is equivalent to R C S.

An interpretation M of an HL,,(@, |, E, <&~ Trans, C) language is a tuple
(W, p, N, I) where W is a non-empty set (whose elements are the states of the
interpretation), p is a function mapping every R € REL to a binary relation on
W (p(R) CW x W), N is a function NOM — W and I a function W — 2PROP,

If M = (W, p,N,I) is an interpretation, w € W, o is a variable assignment
for M (i.e. a function VAR — W) and F is a formula, the relation M,,,0 = F
is defined adding the following clauses to the usual definition of the classical
operators:

1. My,oEpifpe I(w), for p e PROP.
2. My,0 Eaif N(a) =w, for a € NOM.
My, o0 =z if o(z) = w, for € VAR.

- W

My, 0 |E a: F if Myqy,0 = F, for a € NOM.
5. My,0 F x: F if Myg),0 [F, for z € VAR.

6. My,o0 = lx.Fif My,o¥ = F, where ¢ is the variable assignment such
that 0¥ (x) = w and, for y # z, c¥(y) = o(y).

7. My,o |E OgrF if for every w’ such that (w,w') € p(R), My ,0 = F.

8. My, 0 = OrF if there exists w’ such that (w,w’) € p(R) and M, 0 =
F.

9. My, 0 = OLF if for every w’ such that (w’,w) € p(R), My, 0 = F.

10. My, 0 |= ORF if there exists w’ such that (w’,w) € p(R) and My, 0 =
F.

11. My,0 EAF if My,0 = F for allw € W.
12. My,o0 | EF if My, 0 = F for some w’' € W.

Two formulae F' and G are logically equivalent when, for every interpretation
M, assignment ¢ and state w of M: M,,0c = F if and only if M,,,0 |E
G. Every formula in HL,,(@,], E, &) is logically equivalent to a formula in
negation normal form (NNF), where negation appears only in front of atoms.

Therefore, considering only formulae in NNF does not restrict the expressive
power of the language.
If A is a set of assertions, an interpretation (W, p, N, I) is a model of A if:

1. for all R € REL such that Trans(R) € A, p(R) is a transitive relation;
2. for all R, S € REL, if RC S € A, then p(R) C p(S);

3. for all R,S € REL and all w,w’ € W,if RTCS € A and (w,w’) € p(R),
then (w',w) € p(9).

Finally, if F' is a formula and A a set of assertions, {F} U A is satisfiable
if there exist a model M of A and a state w of M such that M,, = F (i.e.
M, 0 = F for every variable assignment o).

2 The tableau calculus

This section shows how to extend the system described in [9] to the presence of
transitivity and inclusion assertions. The expansion rules that will be introduced
to treat assertions are similar to the analogous rules presented by [13, 14, 15, 16].
However, their addition to a terminating calculus dealing also with syntactically
restricted occurrences of the binder is a novelty.

The presentation will be as self contained as possible, therefore it overlaps
with the description given in [9] in many points. However, since some of the
basic notions underlying the calculus are quite involved, they are not given a
completely formal account.

A tableau is a set of branches, and a tableau branch is a sequence of nodes
ng, N1, - .., where each node is labelled either by an assertion or a ground satis-
faction statement, i.e. a formula of the form a: F', where no state variable occurs
free in F'. The nominal a in a satisfaction statement a: F' is called the outermost
nominal of the formula. Node labels are always formulae in NNF. The reason
why a branch is not simply a set of formulae will be briefly explained in the
sequel.

If n occurs before m in a branch, we write n < m. The label of the node n
is denoted by label(n). The notation (n)a: F' is used to denote the node n, and
simultaneously say that its label is a: F'. If a node (n)a : F is in a branch, then
the nominal a is said to label the formula F' in the branch.

In order to give a more compact presentation of the expansion rules, some
notions and abbreviations will be adopted. Relation symbols will also be called
forward relations (and have positive sign) and the inverse of relation symbols
backward relations (with negative sign). A relation is either a forward or back-
ward relation. Relations are denoted by boldface letters: R is a meta-symbol
used to denote either R itself or its inverse R~. The following table defines some
shorthands for formulae and assertions that will be used in the sequel.

oy = a:Opb fR=R
@=RO =def b:Ora ifR=R"

) _ a:0OrpF ifR=R
@ ORE Saef { aORF ifR=R"

a: OpF
a:<>RF =def { a‘OIjF

"R

RLCS
RES Edef R-CS

ifR=R
ifR=R"

if R and S have
the same sign
if R and S have
different signs

Let F' be a ground hybrid formula in NNF and A a set of assertions. A
tableau for {F'} U A is initialized with a single branch, constituted by the node
(ng) ag: F', where ag is a new nominal, followed by nodes labelled by the asser-
tions in A and then expanded according to the following Assertion rules:

@ Rel()

RCS SCP

RCP Rel

(note that Rel actually stands for four rules, according to the relation signs).
Such rules complete the inclusion assertions in A by the reflexive and transitive

closure of . The formula ag: F' is the initial formula of the tableau.

A tableau is expanded by application of the rules in Tables 1 and 2, which

are applied to a given branch.

where b is a fresh nominal
(not applicable if F' is a nominal)

(n)a:AF
— (A)
(m)b: F

where b occurs in the branch

8]
(n)a:b

B[b/a]

(nza:()iF,/\FG) (n) (n)a: (F VvV G))
(2(1)) Z;G (mo)a:F | (m1)a:G
(n)a:b: F (n) a: o F
nE @ e

(n) a: ‘:'R(Fk) b:(T;) a=gRb ©)

WOl @Ok

(mo) a: © b (mo) b: ORra
(m1)b: F (m1)b: F

where b is a fresh nominal

(n)a:EF
——F (B)
(m)b: F
where b is a fresh nominal

Table 1: Expansion rules: first group

Most rules are standard, and their reading is standard too. Note that when
the formulation of a rule contains (boldface) relations, it actually stands for

different rules, according to the relations signs. The rules of Table 1 are the
same as those presented in [9], but for the fact that the modal rules (O, < and
&) are here reformulated to address the multi-modal case. The equality rule
(=) does not add any node to the branch, but modifies the labels of its nodes.
The schematic formulation of this rule in Table 1 indicates that it can be fired
whenever a branch B contains a nominal equality of the form a:b (with a # b);
as a result of the application of the rule, every node label F' in B is replaced by
Fb/al.

Formulae of the form OgF and AF are called universal formulae; nodes
whose labels have the form a: G, where G is a universal formula, are universal
nodes and the rules O and A are called universal rules. When the A rule is
applied producing a node labelled by a formula of the form b : F', it is said to
focus on b (and b is the focused nominal of the inference). The ¢, &~ and E
rules are called blockable rules, formulae of the form a: OrF, where F' is not
a nominal, a: OR F', and a: EF' are blockable formulae and a node labelled by a
blockable formula is a blockable node. A formula of the form a: & gb, where R is
a forward relation, is called a relational formula.

The Trans rule of Table 2 deals with transitive relations and can be seen as a
reformulation (in the presence of inclusion assertions) of the O rule for transitive
modal logics (a particular case of this rule is when R = S). In the Link rule,
that deals with inclusion assertions, R is always a forward relation.

(n)a:Orb (i) RCS
(m)a=gb

(Link)

(n)a:0sF (m)a=grb (t)Trans(R) ({)RCS
(k) b: O F

(Trans)

Table 2: Expansion rules: second group

The premiss n of either the O or Trans rules is called the major premiss,
and m the minor premiss of the rule. In an application of the Link rule, n is
the logical premiss. The premisses i and t, in the rules of Table 2, are the side
premisses of the rules.

The formulation of the Trans rule is very close to the corresponding one
used in description logics, where in fact “roles” include both role names (corre-
sponding to relation symbols) and the inverse of role names, and inverse roles
may also occur in role inclusion axioms. The abbreviation ¢ =g b, however,
does not have exactly the same meaning as the corresponding premiss used in
the rule treating transitivity in description logics [13, 14] (a similar approach
is adopted in [15]), consisting of the meta-notion “b is an R-neighbour of a”.
There are two main differences between the two approaches. First of all, the
semantical notion of accessibility between two states is here given a “canonical
representation” in the object language (a choice already made in [8, 9]): the fact
that a state a is R-related to b is represented by the relational formula a: < gb.
Though semantically equivalent to b: &pa, the latter is not a relational formula,
i.e. it is not the canonical representation of an R-relation. This is reflected by
the fact that the < rule cannot be applied to a relational formula, while b: Gz a

can be expanded by means of the &~ rule. Moreover, in the present work, the
notation a =g b is only an abbreviation for a relational formula, which does
not take subrelations into account: it may be the case that a =g b belongs to a
given branch B for some SC R, and yet a =g b does not. The fact that, in the
present work, no meta-notion is used to represent “R-neighbours” is responsible
for the presence of the Link rules, that have no counterpart in [13, 14, 15].

The first node of a branch B is called the top node and its label the top
formula of B. Nominals occurring in the top formula are called top nominals.
The notion of top nominal is relative to a tableau branch, because applications
of the equality rule may change the top formula, hence the set of top nominals.

A branch is closed whenever it contains, for some nominal a, either a pair of
nodes (n)a:p, (m)a: —p for some p € PROP, or a node (n)a: —a. As usual, it
is assumed that a closed branch is never expanded further. A branch which is
not closed is open. A branch is complete when it cannot be further expanded.

Provided that the initial formula is in HL,,(@,|,E, &) \ [0, the calculus
enjoys the following important strong subformula property, used to prove both
termination and completeness: every universal formula occurring in a tableau
branch is obtained from a subformula of the top formula Fy of the branch by
possibly replacing operators Og with Og, for some relation S in the language
of Fy. Treating nominal equalities by means of substitution, like in [6, 7, 9, 11],
is essential to ensure such a property. By the effect of substitution, however,
distinct node labels may become equal, though the corresponding nodes are still
distinct elements of the branch.

The reason why nodes with the same label do not collapse is that they must
be arrangeable in a tree-like structure, where each node has at most one parent.
The relation on nodes inducing such a structure (see Definition 2) is used to
define indirect blocking (Definition 3). Termination is in fact achieved by means
of a form of anywhere blocking with indirect blocking.

Direct blocking is a relation between nodes in a tableau branch, holding
whenever the respective labels (formulae) are equal up to (a proper form of)
nominal renaming. Essentially, in order for a node (n) F to (directly) block
(m) G in a branch B, it must be the case that G = Fla1/b1,...,an/by], where
a1,...,0n,b1...,b, are non-top nominals such that, for alli =1,...,n, a; and
b; label the same set of propositions in PROP and the same formulae of the form
OgrF'. More precisely:

Definition 1 (Nominal compatibility and mappings) If B is a tableau branch,
then:

1. two nominals a and b are compatible in B if they label the same proposi-
tions in PROP and the same formulae of the form OrF'.

2. A mapping 7 for B is an injective function from non-top nominals to
non-top nominals such that for all a, a and w(a) are compatible in B.
Mappings are extended to act on formulae in the obvious way: w(F') is the
formula obtained by substituting w(a) for a in F, for every nominal a.

3. A mapping 7 for B maps a formula F to a formula G if 7(F) =G and 7
is the identity for all nominals which do not occur in F.

4. A formula F' can be mapped to a formula G in B if there exists a mapping
w for B mapping F to G.

The (direct) blocking restriction forbids the application of a blockable rule
to a node n, whenever the label of a node m < n can be mapped to label(n).

As already mentioned before, indirect blocking relies on a partial order on
the nodes of a branch B, called the offspring relation and denoted by <p , which
arranges them into a family of trees, where non-terminal nodes are blockable
nodes. Every tree is rooted at a node called a root node (a node with no parents
w.r.t. the offspring relation). When a blockable rule is applied, the generated
nodes are children of the expanded node. All the other rules generate siblings
of one of the premisses of the inference (two nodes are siblings either if they are
both root nodes or they have the same parent).

Properly, the offspring relation and blockings are defined by a mutual re-
cursion on branch construction: if B’ is a branch obtained by expanding B, the
definition of <z assumes that the set of blocked nodes in B is already defined,
and indirectly blocked nodes in B depend on the relation <p. This is due to
the presence of the A rule, for which a minor premiss must be defined, since
nodes added to a branch B by an application Z of the A rule are siblings of such
a minor premiss (in the new branch B’ obtained from the expansion); but, in
order to determine the minor premiss of Z it is necessary to know which nodes
are blocked in B.

The presentation that follows is somewhat simplified, and the reader is re-
ferred to [9] for the more formal approach. Let us assume that when the A rule
is applied, beyond the premiss shown in Table 1, the branch contains a node
called the minor premiss of the rule application (which will be defined further
on, in Definition 5).

Definition 2 (Offspring relation) Let B be a tableau branch.

1. Fwvery node already contained in the initial branch from which B is obtained
(i.e. its top node and all the nodes labelled by assertions) is a root node.

2. If a node n has been added to B by application of a blockable rule to node
m, then m <g n (n is a child of m and m is the parent of n).

3. If n has been added to B by application of either a universal rule or the
Trans rule, whose minor premiss is m, then n is a sibling of m (i.e., if
m s a root node, then n is a Toot node too; otherwise, if k <g m, then
k <n TL)

4. If n has been added to B by application of any other rule of table 1 (i.e.
any other single-premiss rule) to node m, then n is a sibling of m.

5. Ifn has been added to B by application of the Link rule, then n is a sibling
of the logical premiss of the inference.

It is worth pointing out that an application of either the Trans rule or a uni-
versal one produces a sibling of the minor premiss of the inference, and not the
major one. This is an essential feature of the offspring relation, needed to prove
termination.

The notions of direct and indirect blocking can now be defined.

Definition 3 (Direct and indirect blocking) Let B be a tableau branch. The
set of directly and indirectly blocked nodes in B is defined by induction on the
(total) order < on the nodes of B:

e n is blocked if it is either directly or indirectly blocked.

e n is directly blocked by m if n is a blockable node, m < n, m is not blocked
and label(m) can be mapped to label(n) in B; n is directly blocked in B if
it is directly blocked by some m in B.

e n is indirectly blocked if it is not directly blocked and it has an ancestor
w.r.t. <g which is blocked.

An indirectly blocked node is called a phantom node (or, simply, a phantom).

It is worth noticing that a node is a phantom if and only if all its siblings are
phantoms too.

The application of the expansion rules is restricted by the conditions defined
next. Restrictions R1-R4 are essentially the same as those formulated in [9].
The restrictions concerning the new rules are formulated apart (R5-R86).

Definition 4 (Restrictions on the expansion rules) The ezpansion of a tableau
branch B is subject to the following restrictions:

R1. no node labelled by a formula already occurring in B as the label of a non-
phantom node is ever added to B.

R2. Blockable nodes can be expanded at most once in a branch.

R3. A phantom node cannot be expanded by means of a single-premiss rule
(including the equality rule), nor can it be used as the minor premiss of a
universal rule.

R4. A blockable node n cannot be expanded if it is directly blocked in B.
R5. A phantom node cannot be used as the minor premiss of the Trans rule.

R6. A phantom node cannot be used as the logical premiss of the Link rule.

Finally, we only need to define the minor premiss of an application of the A
rule.

Definition 5 If B is obtained from B’ by means of an application T of the A rule
focusing on the nominal b, then the minor premiss of T is the first non-phantom
node in B’ where b occurs.

Note that, as a particular case of restriction R3, the A rule cannot focus on
a nominal which only occurs in phantom nodes in the branch. Consequently,
thanks to restriction R3, every application of the A rule has a minor premiss.

Due to space restrictions, the termination and completeness proofs cannot
be included in this work, but can be found in [10]. Here, only a short proof
sketch is included.

Theorem 1 (Termination) If the initial formula of a tableau is in the frag-
ment HL(Q,], E, &)\ 1O, then every tableau branch has a bounded depth and
tableau construction always terminates.

Termination if proved by showing that the nodes of a branch B are arranged
by the offspring relation into a bounded sized set of trees, each of which has
bounded width and bounded depth. This holds because a branch is not a set of
formulae, but nodes, and each node has at most one parent. If nodes labelled
by the same formula collapsed into a single branch element, such an element
might have multiple parents.

The drawback is that the reasoning proving that any node has a bounded
number of siblings is not as simple as it would be if dealing with sets of formulae.
It relies in an essential way on the fact that universal rules do not generate
siblings of their major premisses and, thanks to the mentioned strong subformula
property, the number of universal formulae occurring in a tableau branch is
bounded.

In order to prove that tree depth is also bounded, it is shown that the size
of any set of blockable nodes which may occur in a tableau branch, and such
that none of its elements blocks another one, is bounded. This holds for two
reasons. First of all, the calculus enjoys a weak subformula property: for any
non-relational formula a: F' occurring in a tableau branch, F' is obtained from
a subformula of the top formula Fy of the branch by replacing free variables
with nominals and, possibly, operators Ogr with Og, for some relation S in
the language of Fy. Secondly, the strong subformula property ensures that the
number of nominal compatibility classes is bounded.

Theorem 2 (Completeness) Let F be a formula and A a set of assertions.
If {F}UA is in HL,,,(Q, |, E,&>, Trans, C) \ [0 and is unsatisfiable, then any
complete tableau for {F} U A is closed.

In order to prove that the calculus is complete, it is shown — like in [9] — how
to extend a subset Ny of any complete and open branch B in such a way that
every directly blocked node is added a suitable “witness” (the witness(es) of a
blockable node n can be viewed simply as node(s) which could by obtained by
application of the corresponding blockable rule to n). The fact that the labels of
blocked and blocking nodes are not necessarily identical does not allow taking
the witness of the blocking node as a witness of the blocked one. Nor can a
model be simply built from a set of states consisting of equivalence classes of
nominals, where two nominals are in the same class whenever some blocking
mapping maps one to the other: two nominals a and b may be compatible even
if the branch contains a node labelled by a: —b.

The initial set of the construction, Ny, is the union of the non-phantom
nodes in B and the nodes of the form (n)a: F, with a occurring in some non-
phantom node in B and either F has the form OrG or FF € PROP. Ny is
extended by steps, constructing a (possibly infinite) sequence of sets of nodes
No C Ny CNy..., where each N1 is obtained from A; by (fairly) choosing
a blockable node n with no witness in A;. The construction ensures that there
exists a node ng € Ny whose label can be mapped to label(n) in N;. The
blocking mapping is then used to add new nodes and obtain A;,1, in such a
way that n has a witness in ;4 1. It is finally shown how to build a model of the
initial formula from the union of the sets A/; (due to the presence of assertions,
the construction is quite different from the corresponding one in [9]).

1For a similar reason it is not possible to block nominals instead of nodes: two nominals
with different parents may become equal by substitution.

10

We conclude with some examples illustrating the calculus in action. The
first simple one below shows the interplay between the Trans and Link rules.
It consists of the closed one-branch tableau represented below for the formula
OsOgp A Og—p, together with the assertions Trans(R), RC S, SC R. The

notations n ~® m or (n1,...,nk) ~»R m, used in the rightmost column below,
means that the addition of node m is due to the application of rule R to node
n (or nodes ny,...,n;). Nodes 0—4 constitute the initial tableau. The branch
is closed because of nodes 11 and 15.

(0) a:(0sOspADg—p) (8) a:Osb 6~ 8

(1) Trans(R) (9) b:Cgp 6~°9

(2) RCS (10) b:Oge 9~ 10

3) SCR (11) eap 9~ 11

(40 RCR Relp (12) a:ORb (8,3) ~»tink 12

(5) SCS Relg (13) b:Oge (10, 3) ~stink 13

(6) a:05Csp 0~"6 (14) b:0Op—-p (7,12,1,2) ~>Trns 14

(7) a:Og-p 0~NT (15) e —p (14,13) ~" 15

Next example illustrates the dynamic nature of blockings. Figure 1 repre-
sents a complete and open tableau branch B for the formula F' = (Alz.Or-Op—2)A
Ogp — which holds in a state w if every state of the interpretation has at least
one R-sibling, and p holds in every state R-related to w — where R is a transitive
relation. In the representation of the branch given below, G = Cr-Op—z and,
in the notation (n,m) ~" k, n is the major premiss of the inference and m the
minor one.

0) ai:F 21) as:ORaz 18 ~© 21
1) Trans(R) 22) a5:Op—as 18~ 22
2) RCR 23) a4:Ogp (13,19,1,2) ~»Trans 23
3) ai:Alz.G 0~"3 24) a4:ORag 20~ 24
4) a;:Ogp 0~"4 25) ag:—as 20~ 25
5) a1:lx.G (3,0) ~A5 26) as:Ogp (9,21,1,2) ~»Trans 26
6) a1:Op-Or—a1 5~+6 27) as: Ogay 22~ 27
7) a2 Ograi 6~ 7 28) ar:—as 22 ~»© 28
8) a2:Op-a1 6~ 8 29) ag:Ogp (23,24, 1,2) ~»Trans 99
9) a:ORgp (4,7,1,2) ~»Trans g 30) as:p (23,24) ~" 30
10) a2:ORas 8~ 10 31) a2:p (26,21) ~" 31
11) az:—a1 8~ 11 32) ag:lz.G (3,24) ~A 32
12) aj:p (9,7) ~P 12 33) a4:lx.G (3,19) ~A 33
13) a3:Ogp (9,10,1,2) ~»Trans 13 34) ag:Op-Ogpmas 32~t 34
14) asz:p (9,10) ~5 14 35) aa:Op-Opr—as 33~+35
15) asz:lz.G (3,10) ~A 15 36) ag:Orag 35~ 36
16) ag:lz.G (3,7) ~A 16 37) ag:Op—aq 35~ 37
17) a3:Op-Or—as 15 ~+ 17 38) as:Ogp (23,36,1,2) ~»Trans 38
18) a2:Op-Or—az 16 ~+ 18 39) ag:ORrag 37~ 39
19) a4:ORas 17~ 19 40) ag:—aq 37~ 40
20) a4:Ogr-as 17~ 20 41) ag:p (38,36) ~" 41

Figure 1: A complete tableau branch for {(Alz.Or-<Or—2) A Ogp, Trans(R)}

The relation <p in this branch can be described as follows, where the no-
tation n <p {mi,...,my} abbreviates n <g my and ...n <z my. Nodes
0...6 are root nodes, and 6 <5 {7,8,9,12,16,18}, 8 < {10,11, 13,14, 15,17},
17 <g {19,20,23,33,35}, 18 <5 {21,22,26,31}, 20 <5 {24,25,29, 30,32, 34},
22 < {27,28}, 35 <5 {36,37,38,41}, 37 <5 {39,40}. For instance, node 7 is
the minor premiss of the application of the O rule producing 12, and 10 is the
minor premiss of the application of the Trans rule producing 13, therefore 7 and

11

12 are siblings and so are 10 and 13. When the A rule is applied to produce node
15 focusing on the nominal ag, the first non-phantom node where asz occurs is
10, so that 10 is the minor premiss of the inference and a sibling of 15.

In order to illustrate blockings, the notation B,, is used to denote the branch
segment up to node n, and a; ~, a; means that a; and a; are compatible in
B, (note that, in this example, the formulae to be taken into account to check
compatibilities are p and Ogp). Node 17 cannot be blocked by 6, and 20 cannot
be blocked by 8, because a1 is a top nominal and mappings can only affect
non-top ones. In the whole branch B, the nodes 18, 34 and 35 are blocked by 17
(note that 17 is not an ancestor of 18), because az /41 a2 =41 a4 ~41 ag. Their
descendants (21, 22,26 — 28, 31,36 — 41) are therefore phantoms in B. However,
while 34 is not expanded because it is blocked by 17 in Bsy (because ag ~34 ag),
18 is not blocked in B; for all ¢ < 31, i.e. until as:p is added to the branch.
Therefore 18 is expanded. Analogously, 35 is not blocked by 17 until a4:p is
added to the branch (node 41). The branch is complete: every non blocked
node has been expanded or used as the minor premiss of a suitable rule. In
particular, note that the nominals as, a7, ag, ag occur only in phantom nodes,
therefore the A rule cannot focus on them.

3 The Sibyl Prover

The calculus described in Section 2 has been implemented in a prover called
Sibyl, that is available at http://cialdea.dia.uniroma3.it/sibyl/. It is
written in Objective Caml and takes as input a file containing a set of assertions
and a set of formulae, checks them for satisfiability and outputs the result.
Every input formula in HL,,(@, |, E,<7) \ O]O is preprocessed and translated
into the fragment HL,,(@, |, E, &)\ JO, by use of the satisfiability preserving
translation defined in [20]. If some formula is not in HL,,(@,},E, <)\ O]O,
then Sibyl warns the user that termination and correctness of the result are
not guaranteed. At present, backjumping is the only important optimization
technique implemented in the prover.

In order to test Sibyl for correctness, it could not be compared to other
provers for modal or description logics, since, to the author’s knowledge, the
hybrid binder and relation hierarchies coexist in none of them. For the same
reason it would not make much sense using problems in existing repositories for
modal or description logic. Therefore Sibyl has been run on a set of randomly
generated tests, and the translations of the same tests into first order logic (us-
ing the standard translation of hybrid logic formulae and the straightforward
translation of assertions) have then been given in input to the SPASS prover
[21]. Each test is based on a file generated by hGen [2], modified so as to obtain
formulae in HL,,(Q,},E,<7)\ OJO and with the addition of a random set of
transitivity and inclusion assertion. A first group of 1620 tests has been gener-
ated with 30% probability for a relation to be transitive and 30% probability
for any pair of relations R, .S to be related by either RC .S or R~ £ S. The tests
are grouped according to their modal degree (varying from 2 to 10), each group
containing tests with 10 to 50 clauses (hGen generates sets of clauses). In order
to evaluate the impact of the presence of assertions on Sibyl’s behaviour, other
four groups of tests have been obtained from the basic set, reducing the number
of assertions in each file, respectively to 756%, 50%, 25% and no assertions at

12

all.

Sibyl and SPASS have been run on these test sets with one minute timeout
and they agree on the outcome of all problems where both provers terminate
successfully. The test sets, the detailed results of the experiments and diagrams
summarizing them can be downloaded from Sibyl web page.

Though the experiments only aimed at testing Sibyl for correctness, they
were also an opportunity to give a preliminary evaluations of its performances
compared to SPASS (that was run in default mode, since, from some preliminary
tests, other flag settings appeared either to degrade its performance or have
no significant effect). Quite surprisingly, although SPASS is a mature prover
and Sibyl a newborn, the latter turned out to globally outperform the former.
SPASS could not solve about 13% of the problems in the allowed one minute
time, while Sibyl failed in less than 5.5%. Taking the number of timeouts as
a performance measure, the impact of the number of assertions and the modal
degree of formulae has been evaluated. In the tests with no assertions SPASS
performs better than Sibyl: 2.22% timeouts versus Sibyl’s 4.81%. On the other
hand, SPASS could not solve 21.98% tests of the base set (with no reduction
of the number of assertions), while Sibyl 6.30%. With respect to the effect of
the modal degree on the behaviour of the provers, in the base set, for instance,
SPASS ran out of time in 2.22% tests of modal degree 2, and it reached 32.22%
timeouts in the problems of modal depth 10. In the same set of problems, Sibyl’s
failures range from 6.67% (modal degree 2) to 9.44% (modal degree 10).

The experimental results show that Sibyl’s behaviour only slightly degrades
when the number of assertions and the modal degree increase. In comparison,
the first order prover appears to be much more sensitive to the number of
assertions, especially when the modal degree becomes higher. Presumably, this
is not a credit to Sibyl, but rather an instance of the poor behaviour exhibited
by first order theorem provers when fed with non optimized translations of
modal formulae. In order to refine such a preliminary analysis, other encoding
principles should be used and tested, and the effect of transitivity and inclusion
assertions should be analysed separately.

4 Concluding Remarks

This work presents a satisfiability decision procedure for hybrid formulae in
HL,,(@,],E, &7, Trans, C) \ OJ0, and its implementation in the Sibyl prover.
Transitivity and relation inclusion assertions are treated by expansion rules
which are very close to (though not exactly the same as) the analogous rules
presented in [13, 14, 15, 16]. The main result of this work is proving that they
can be added to a calculus dealing also with restricted occurrences of the binder,
maintaining termination, beyond soundness and completeness.

Differently from other terminating tableau calculi for (binder-free) hybrid
logic including the global and converse modalities, blocking concerns here nodes
(corresponding to formulae) and not nominals (i.e. sets of formulae). In the
absence of the binder, compatibility checks, requiring to exit from the “local”
view and look for other formulae in the branch, are needed only for the formulae
outermost nominals and concern only a subset of the formulae labelled by such
nominals. Indirect blocking, in turn, relies on a particular partial order on
nodes, arranging them in a family of trees of bounded width and bounded

13

depth. Width boundedness is guaranteed by the fact that universal nodes (which
may be expanded a potentially unbounded number of times) do not generate
“siblings”.

Other works have addressed the issue of representing frame properties and /or
relation hierarchies in tableau calculi for binder-free hybrid logic (for instance,
[5, 15, 16]). The maybe richer calculus of this kind is [15], that considers graded
and global modalities, reflexivity, transitivity and role hierarchies. The converse
modalities are however missing, and inverse relations are not allowed.

The possibility of adding graded modalities (i.e. number restrictions of de-
scription logics) to the calculus presented in this work is an interesting but hard
issue. As a matter of fact, whether restricted occurrences of the binder can
coexist with graded modalities in a decidable hybrid logic is an open question.

Acknowledgments. The author’s implementation (and debugging) work has
built upon the bachelor or master projects of several students. Beyond those
who worked on Herod [11], Sibyl’s ancestor, the author is especially indebted to
Giulia Di Rienzo, who implemented Sibyl’s first version.

References

[1] C. Areces, P. Blackburn, and M. Marx. A road-map on complexity for
hybrid logics. In Computer Science Logic, pages 307-321. Springer, 1999.

[2] C. Areces and J. Heguiabehere. hGen: A random CNF formula generator
for hybrid languages. In Methods for Modalities 3 (M4M-3), Nancy, France,
2003.

[3] C. Areces and B. ten Cate. Hybrid logics. In Handbook of Modal Logics,
pages 821-868. Elsevier, 2007.

[4] P. Blackburn and J. Seligman. Hybrid languages. Journal of Logic, Lan-
guage and Information, 4:251-272, 1995.

[5] T.Bolander and P. Blackburn. Terminating tableau calculi for hybrid logics
extending K. FElectronic Notes in Theoretical Computer Science, 231:21-39,
20009.

[6] S. Cerrito and M. Cialdea Mayer. An efficient approach to nominal equal-
ities in hybrid logic tableaux. Journal of Applied Non-classical Logics,
1-2(20):39-61, 2010.

[7] S. Cerrito and M. Cialdea Mayer. Nominal substitution at work with the
global and converse modalities. In Advances in Modal Logic, volume 8,
pages 57-74. College Publications, 2010.

[8] S. Cerrito and M. Cialdea Mayer. A tableaux based decision procedure
for a broad class of hybrid formulae with binders. In Automated Resoning
with Analytic Tableauxr and Related Methods (TABLEAUX 2011), pages
104-118. Springer, 2011.

[9] S. Cerrito and M. Cialdea Mayer. A tableau based decision procedure for
a fragment of hybrid logic with binders. Journal of Automated Reasoning,
2012. Published online, to appear on paper.

14

[10]

[11]

[12]

[13]

M. Cialdea Mayer. Tableaux for multi-modal hybrid logic with binders,
transitive relations and relation hierarchies. Technical Report RT-DIA-
199-2012, Dipartimento di Informatica e Automazione, Universita di Roma
Tre, 2012.

M. Cialdea Mayer and S. Cerrito. Herod and Pilate: two tableau provers for
basic hybrid logic. In Proceedings of IJCAR 2010, pages 255-262. Springer,
2010.

E. Griadel. On the restraining power of guards. Journal of Symbolic Logic,
64:1719-1742, 1998.

I. Horrocks and U. Sattler. A description logic with transitive and inverse
roles and role hierarchies. Journal of Logic and Computation, 9(3):385-410,
1999.

I. Horrocks and U. Sattler. A tableau decision procedure for SHOZQ.
Journal of Automated Reasoning, 39(3):249-276, 2007.

M. Kaminski, S. Schneider, and G. Smolka. Terminating tableaux for
graded hybrid logic with global modalities and role hierarchies. Logical
Methods in Computer Science, 7(1), 2011.

M. Kaminski and G. Smolka. Terminating tableau systems for hybrid logic
with difference and converse. Journal of Logic, Language and Information,
18(4):437-464, 2009.

M. Mundhenk and T. Schneider. Undecidability of multi-modal hybrid
logics. FElectronic Notes in Theoretical Computer Science, 174(6):29-43,
2007.

M. Mundhenk, T. Schneider, T. Schwentick, and V. Weber. Complexity of
hybrid logics over transitive frames. Journal of Applied Logic, 8(4):422-440,
2010.

W. Szwast and L. Tendera. On the decision problem for the guarded frag-
ment with transitivity. In Proc. of the 16th Symposium on Logic in Com-
puter Science (LICS), pages 147 —156, 2001.

B. ten Cate and M. Franceschet. On the complexity of hybrid logics with
binders. In Proceedings of Computer Science Logic 2005, pages 339-354.
Springer, 2005.

C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, and P. Wis-
chnewski. SPASS version 3.5. In 22nd International Conference on Auto-
mated Deduction (CADE 2009), pages 140—-145. Springer, 2009.

15

