
Generation of reliable randomness
via social phenomena

Roberto De Virgilio and Antonio Maccioni

Dipartimento di Ingegneria
Università Roma Tre, Rome, Italy
{dvr,maccioni}@dia.uniroma3.it

Abstract

Randomness is a hot topic in computer science due to its important im-
plications such as cryptography, gambling, hashing algorithms and so on. Due
to the implicit determinism of computer systems, randomness can only be
simulated. In order to generate reliable random sequences, IT systems have
to rely on hardware random number generators. Unfortunately, these devices
are not always affordable and suitable in all the circumstances (e.g., personal
use, data-intensive systems, mobile devices, etc.). Human-computer interac-
tion (HCI) has recently become bidirectional: computers help human beings
in carrying out their issues and human beings support computers in hard tasks.
Following this trend, we introduce RandomDB, a database system that is able
to generate reliable randomness from social phenomena. RandomDB extracts
data from social networks to answer random queries in a flexible way. We pro-
totyped RandomDB and we conducted some experiments in order to show
the effectiveness and the advantages of the system.

1 Introduction

Randomness has been studied in many fields, from philosophy to psychology,
from physics to social sciences. Analogously, mathematics and computer science
have studied randomness under many aspects. In this context, randomness is
considered to be the extent that allows us to obtain numbers and sequences of
numbers (generally referred to as random data) in a non-predetermined and un-
predictable manner. It means that every single number is equally probable to be
drawn and the completion of a sequence cannot be inferred by correlation with
previous sequences. The generation of random data has to be really accurate
and therefore it is performed by complex agents, the so-called Random Number
Generators (RNGs). They allow computer systems to reach the “realism”, pre-
cluded by deterministic procedures. Although at first glance the generation of
random numbers can appear as simple as throwing a dice, it is a sensitive task
for automatic agents. In fact, automatic agents are deterministic systems able to
generate data only by processing machine-instructions and computing formulas.
In case, it is possible to provide pseudo-randomness by executing an algorithm
with a secret input, called seed. It means that, despite the user perception of a
random generation, the randomness is only simulated. Moreover, the choice of a
seed is a hard task because, if it is revealed, random data becomes predictable.

Researchers and companies are still investigating ways to improve both RNGs
and the choice of effective seeds. Most of the generators are Pseudo Random
Number Generators (PRNGs) able to reach only pseudo-randomness. In critical
applications a PRNG is not good enough (and therefore not even allowed in
some cases such as gambling applications). They can be cryptographically in-
secure, present a poor dimensional distribution, suffer some form of periodicity
and use an unbounded size of memory. Therefore, using a True Random Number
Generator (TRNG) is often required. Even if there is no exact way to determine
if a RNG is true or pseudo, the TRNGs are those that gather information from
entropic sources without using any sort of algorithm. For instance, they extract
information from physical phenomena such as radioactive decay, thermal noise,
micro-states of atoms and molecules. TRNGs are often implemented in expensive
hardware devices and have a lower throughput than PRNGs. Therefore different
kind of true random generators would be desiderale.

Motivation. HCI features are becoming more and more prominent in many
computer science’s areas. Unaware human decisions have recently became part
of algorithms and computational processes in order to help computers in solving
hard computational operations. The reCAPTCHA [15] project digitalizes books,
newspapers and old time radio shows by exploiting the CAPTCHA1 tasks, which
were initially proposed for distinguishing human beings from computer bots.
Duolingo2 aims at translating the Web pages using language course exercises.
Micro-tasks of any kind are widely managed and solved through the use of crowd-
sourcing and collaborative platforms such as Mechanical Turk Machine3. In the
database area, CrowdDB [5] uses people for answering queries. Following this
trend, we try to solve the problem of reliable random number generation in a
crowd-like way. Whereas a single human being shows a high degree of deter-
minism when generating a random sequence of numbers [13], studies made by
sociophysics (see [6] for survey) show that the society is a chaotic system and
thus, some social phenomena follow entropic and physical behavior that are not
ruled by determinism. Even entropy definitions such as the one in the second
law of thermodynamics are likened to psychology [8] and to economics [3].

Contribution. From the motivations above, we can consider the collective
behavior an entropic source and consequently, social networks (e.g., Facebook,
Twitter, Flickr, etc.) the virtual places where social phenomena take place.
Nowadays social networks constantly produce huge amounts of data that re-
flect and capture the behavior of millions of people. Therefore, on the one hand,
these social data comprise entropic data; on the other hand, due to the significant
amount of data, they need a persistent storage, i.e. DBMS technology. For this
purpose we propose a database system, called RandomDB, that, by exploiting
social data, produces “good” randomness overcoming many drawbacks of exist-
ing RNGs. Therefore, RandomDB can be used as a reliable RNG, replacing the
current state of the art.

1 Completely Automated Public Turing test to tell Computers and Humans Apart
2 http://duolingo.com/
3 http://www.mturk.com/

http://duolingo.com/
http://www.mturk.com/

Organization. The paper is organized as follows: in Section 2 we discuss
related work, in Section 3 we overview the RandomDB showing the architecture
and the system at work. In Section 4 we show the assessments of a developed
prototype. Finally, we sketch conclusions and future evolutions in Section 5.

2 Related Work

RNGs are commonly classified into PRNGs and TRNGs. Famous PRNGs are
the Linear Congruential Generator, Lehmer Random Number Generator, the
Mersenne Twister [10], Blum Blum Shub, CryptGenRandom4 (a.k.a. Microsoft
CAPI) and Yarrow. PRNGs are easily predictable [2] and therefore in many
critical applications we are forced to use systems from the plethora of TRNGs.
Random.org5 exploits atmospheric noise and offers random data through Web
APIs. Lavarnd6 selects a true random seed by taking pictures of floating material
in lava lamps and then uses a PRNG to generate random data. HotBits7 employs
radioactive decays. Intel DRNG8 generates random data at a high-rate from the
thermal noise within the silicon. Finally, Protego9 exploits quantum physics and
GRANG [14] computes the thermal noise together with a Poisson arrival time
for better efficiency. The main disadvantages of these methods are the high cost
of ad-hoc devices and, often, their inability to reach an expected random data
output rate. To this aim, work has been done in order to extract randomness
from other contexts (e.g., [12,4,7]). In [12] and [4] the authors exploit the entropy
generated by human beings using mouse and keyboard. Since these methods are
not always applicable and present dangerous vulnerabilities [16], the work in [7]
aims to produce pseudo-random data with the conjunct use of extractors and
people playing videogames.

3 System Overview

In this section we sketch how RandomDB works and overview its architecture.
System Architecture. As shown in Fig. 1, RandomDB is composed by

three main components: (i) the Query Processor (QP), (ii) the Mapper (MP)
and (iii) the Generator (GN). The MP and GN components are supported by a
DBMS to store Data and Metadata.

In particular the Data store contains the social data concerning social phe-
nomena. In a start-up phase, the administrator selects all data sources from
which to extract all social data. Then such data are stored in a database with
respect to a certain source domain and the Metadata store will contain all in-
formation useful to map source domains and target domains, as we will describe
4 http://technet.microsoft.com/en-us/library/cc962093.aspx
5 http://www.random.org/
6 http://www.lavarnd.org/
7 http://www.fourmilab.ch/hotbits/
8 http://software.intel.com/
9 http://www.protego.se/

http://technet.microsoft.com/en-us/library/cc962093.aspx
http://www.random.org/
http://www.lavarnd.org/
http://www.fourmilab.ch/hotbits/
http://software.intel.com/
http://www.protego.se/

Mapper

Random
Domains

Query
Processor Generator

Data Meta
data

User

UI Social
Data

Social
Data

Social
Data

Social Phenomena

1 2

3

4

5

6

Fig. 1. RandomDB architecture.

later. The QP component provides an interface to interact with the external
world.

System At Work. The working process is to map data from a source domain
to a target domain. Source domains refer to data from social phenomena10. For
example, let us consider people expressing preferences on a picture or on a topic
(i.e. the iLike feature of many social networks); in this case the source domain
S is represented by data that measures this liking (e.g., natural numbers). The
target domains correspond to random data domains that users and applications
require. A target domain is associated to a query (random query) to perform in
RandomDB. For example a rand()-like function of the C programming language
is a random query that can be submitted to RandomDB. In this case the
target domain refers to all real numbers in the range (0, 1]. Therefore, in order
to generate a random real number in the range (0, 1], our system has to use a
mapping function M that maps a source S in T = (0, 1], i.e. M : S → T . A
user or an agent, through a random query, selects to generate random data in
a particular target domain (e.g., a real number, in case in a particular range).
Then, the request is transferred to the GN component (i.e. Fig. 1, step À). GN
is responsible to generate the final random data fitting the user request. Such
component has a central role in RandomDB architecture since it communicates
with all the other components. GN communicates with MP (i.e. Fig. 1, step Á)
to know which mapping has to be computed from one or more source domains
associated to the selected target domain. MP is the component which is aware of
the source domains and it is in charge of mapping them to the target domains.
Such mappings are implemented in stored procedures on the underlying data
store as will be explained in the next Section 4. MP exploits metadata (i.e. Fig. 1,
step Â) in order to return a query to GN; such query will be executed over the
underlying social data stored in our database (i.e. Fig. 1, step Ã and step Ä).
The procedure selects social data of interest and then, in case, applies some

10 In this paper we do not delve into considerations about what is a social phenomenon
and when it can be considered entropic.

Random
Domains

Data Meta
data

Social
Data

Social
DataSocial

Data

Social Phenomena

Mapper

T1

T2

Tn

S1

S2

Sm

S3

Generator

T1

S1

S2

T1

2

4

35

f1
f2

f3
f4

f5

f1
f2

Fig. 2. RandomDB generation process.

transformations on such data. A transformation could be a simple operation,
e.g., a casting operation, or a more complex task, e.g., mod operation, to provide
data correctly in the range of the target domain. In this last example, we are
aware that a transformation can ruin the uniform distribution of the target
domain interval. In the case of the mod, we have to be sure that the source
domain interval is much larger than the target domain interval, e.g., we cannot
map a natural number in the range [0, 1] into a natural number in the range [0, 2].
This intelligence is already embedded in MP that checks statistical metadata of
the social data such as variance, covariance, standard deviation, minimum and
maximum values, etc. Finally, the random data is returned to QP that will
output the result (i.e. Fig. 1, step Å).

Fig. 2 sketches the working process of both MP and GN. Let us consider sev-
eral target domains, i.e. T1, T2, . . . , Tn and source domains, i.e. S1, S2, . . . , Sm.
A target domain can be associated to one or more source domains, e.g., a real
number within (0, 1] can be extracted from different phenomena. In this case we
have a target domain, i.e T1, corresponding to the set of real numbers within
the range (0, 1] and two source domains, i.e S1 and S2, corresponding for in-
stance, to a Facebook phenomena and a Flickr phenomena, respectively. Given
the mapping M′ : 〈S1, S2〉 → T1, to generate an element of T1 the mapping can
use an element of S1 or of S2, or a composition of elements from both S1 and
S2.

Use of the System. RandomDB can be configured on top of common
DBMSs and used in two scenarios. In the former is used by a human user that
wants to get a random data upon request, while in the latter case is used em-

bedded into an application where QP is a programmable interface to allow an
automatic communication between RandomDB and the application itself (i.e.
API). In this last scenario, contrary to common RNGs, we can exploit Ran-
domDB to work with the active domain of existing database instances (the
actual content of the database). The active domain of the database can, even
dynamically, form target domains. For example, if we have a table containing
cities, RandomDB would be able to directly retrieve randomly a city. This oper-
ation can be simply computed by enumerating tuples (or values) and after that,
generating a number in the range [1, . . . , t], where t is the number of objects in
the range of the target domain.

4 System Evaluation

This section evaluates the prototype of RandomDB that we have implemented.
First, we explain how it was created and then we provide the evaluation in
terms of efficiency and effectiveness. This also shows the feasibility to implement
randomness generation processes using a DBMS.

Implementation. RandomDB is implemented in Java and exploits a pro-
cedural language for SQL procedures to implement all mappings and transfor-
mations. In particular PL/pgSQL, since we used PostgreSQL 9.1 as RDBMS.
Java is used to implement a set of wrappers and different programmatic accesses
to social phenomena in several social networks. At the moment, we consider the
following social networks.

– Flickr11: we extracted the most recent photos (500 at a time) via the Flickr
API. Let us consider Fig. 3 that, on the left side, shows an extract from
Flickr and, on the right side, shows the retrieved information. They contain
lot of different information that can be considered random. In particular,
we extract values from the fields secret, owner and title. In future work
we can extend the extraction by considering also information extracted from
the pixel values of the photos.

– Twitter12: we used the tags associated to the photos extracted by Flickr to
search the most recent 100 tweets.

– Facebook13: similarly to Twitter, we used the tags associated to the photos
extracted by Flickr to search the most recent 200 posts.

Fig. 4 shows the schema we implemented to test our system. In particular we
have three main relations: (i) Domains, (ii) Mappings and (iii) SocialData.
The first two tables belong to the Metadata store while the third to the Data
store. The relation Domains collects all meta information about the domains
(both source and target) considered in RandomDB. In particular we store an
identifier, id that is the key of the relation, the name of the domain and the do-
main type, whose value is s (for source) or t (for target). The attribute data type
11 http://www.flickr.com/services/api/
12 https://dev.twitter.com/
13 http://developers.facebook.com/

http://www.flickr.com/services/api/
https://dev.twitter.com/
http://developers.facebook.com/

Fig. 3. Extraction of social data from Flickr.

indicates which type of data is associated to the domain. Then we store an at-
tribute range, indicating the range of the domain.

DOMAINS
id
name
range
domain_type
data_type

SOCIALDATA
key
id
value

MAPPINGS
source
target
transformation

Fig. 4. Database schema in RandomDB.

The relation Mappings collects all mappings between domains; in particular
the attributes source and target refer to identifiers in Domains whose types have
values s and t, respectively. The attribute transformation stores an identifier of
a stored procedure that is needed to retrieve correctly the requested random
data. Finally, we have the relation SocialData containing all data values ex-
tracted from the social phenomena. In particular each entry of SocialData
provides an auto-increment primary key, i.e. key, an identifier id corresponding
to the identifier in the relation Domains, i.e. it is a foreign key, and the data
value in the domain, value. For instance, Fig. 5 shows an example of instance
corresponding to the schema of Fig. 4. In this case we have four source domains
extracted from Flickr, Twitter and Facebook. Then we define several mappings
to generate random data. Let us consider the mapping M′ : 〈S1, S2〉 → T1.
In this case we can generate random data for the target domain Target1 from
Facebook and/or Flickr. Each mapping is processed by a PL/pgSQL procedure
to generate the corresponding queries. In this case we have to select the first
available value from the source domains (i.e. S1 and S2), as we can see in the
following query:

Domains
id name range domain type data type

S1 Flickr [-32768, 32767] s smallint

S2 Facebook [-999999, 999999] s int

S3 Flickr [a,z] s char

S4 Twitter [0, 4294967295] s uint

T1 Target1 (0,50] t int

T2 Target2 [a,z] t char

T3 Target3 (0, 1] t real

.

SocialData
key id value

7898 S4 78999

7899 S2 770328

8000 S1 124

8001 S3 b

8002 S1 23456

8003 S2 -1793,89

.

Mappings
source target transformation

S1 T1 f1

S2 T1 f2

S2 T2 f3

.

Fig. 5. An instance of tables in RandomDB.

SELECT id, value
FROM SocialData
WHERE id = S1 OR id = S2
ORDER BY key
LIMIT 1

Considering the instance tables in Fig. 5, the query returns the pair <S2,
770328>. Then, another query selects the transformation that we have to execute
on the retrieved value for the given mapping:

SELECT transformation
FROM Mappings
WHERE source = S2 and target = T1

The identifier f2 is returned to individuate a built-in operation or another
stored procedure. For instance, let us suppose that f2 = CAST(MOD(value,50)
as int). Now the final query can compute the transformation f2 on the value
770328:

SELECT CAST(MOD(770328,50) AS INT)

The answer 28 is returned to the user. Once we generated the random data,
we delete the entry in the table SocialData used for the generation. Our system
will enrich periodically the Data store by extracting new values from the social
phenomena that will be appended in the table SocialData. Note that the
extracted data in the Data store are sequentially ordered on the exact time of
generation. In this way the simulation of the system is the same as if the whole
process was computed online.

TRNG Throughput

Protego 16 KB/s (∗)
GRANG 50 MB/s (∗)

Intel DRNG 500 MB/s (∗)
Hotbits 100 B/s (∗)

RandomDB 400 KB/s

∗ Declared by the vendor

Table 1. Throughput of TRNGs.

Efficiency Evaluation. The efficiency of RandomDB is based on two fac-
tors: (i) extraction of social data and (ii) query processing on the database. The
former is dependent from the bandwidth and access policy of the social networks.
The latter is based on the physical design of the database and on the speed of
the machine where RandomDB is deployed. We compared the throughput of
RandomDB against the most used TRNGs in Table 1. We used the declared
rates by the vendors because as said before, these systems are commercial (and
expensive), so we couldn’t test them by ourself. We did not consider the PRNGs
for the efficiency, which however is similar to RandomDB (i.e. mostly it depends
on the the power of the machines). We used a commodity laptop with a dual
core 2.5 GHz Intel and 4 GB of memory, running Linux Ubuntu. We measured
the throughput of RandomDB posing a loop of random queries for the integer
numbers target domain.

Under this aspect, we perform better than some of the TRNGs. Note that
we can improve the performance if we use a faster machine. However, the high
rate throughput TRNGs are expensive hardware devices.

Effectiveness Evaluation. Evaluating the effectiveness of random data
generation is a very complex task, probably even harder than the generation
itself. Currently, empirical statistical tests are considered the best way to eval-
uate a RNG [11]. Since “Building a RNG that passes all statistical tests is an
impossible dream”, as famously stated by Pierre L’Ecuyer, the goodness of a
RNG is evaluated on the number of passed tests among a battery of many sta-
tistical significance tests [9]. These tests define, on the next random data to be
generated, hypotheses enclosed in confidence intervals [α, 1−α], where α is usu-
ally set to 0.05 or to 0.01. The hypotheses are based on criteria over previous
generated data. For example, a criteria can consider if the sum of a sequence of
numbers is constant. Therefore, for a better evaluation one should compute a set
of different tests over random generated sequences. The result of a test is sum-
marized by the p-value which represents a probability (in fact p-value ∈ [0, 1]) to
measure the support for randomness hypothesis. The test is considered passed,
i.e. the sequence is not predictable on the basis of the given hypotheses, if |p-
value−1| ≥ α, i.e. abs(p-value−1) ≥ α, otherwise the test is failed. Note that
two different sequences generated with the same RNG can return different p-
values. This is the reason why, for the same RNG, the tests are executed many
times over different sequences. Among the existing statistical tests for RNGs,
the Diehard battery tests of George Marsaglia14 and the NIST [1] test collection

14 http://www.stat.fsu.edu/pub/diehard/

http://www.stat.fsu.edu/pub/diehard/

150	

200	

250	

300	

350	

400	

450	

500	

550	

4	
 10	
 20	
 25	
 40	
 50	
 100	
 125	
 200	
 250	
 1000	
 2000	

#	

pa

ss
ed

	
 te
st
s	

SEQUENCE	
 LENGTH	
 	
 /	
 SAMPLE	
 SIZE	

MT19937	
 $RANDOM	
 /dev/urandom	

/dev/random	
 random.org	
 RandomDB	

Fig. 6. RNGs comparison with Dieharder’s tests.

are the most common. They both implement the principles explained above and,
in particular, the last one is becoming the de-facto standard battery test since
it is required in many critical applications. In order to assess RandomDB we
used the Dieharder test suite15 that is included in the GNU Scientific Library
(GSL). It comprises both the Marsaglia’s tests (e.g., the birthday spacings test
that, based on the birthday paradox, checks if the spacings between the numbers
are asymptotically exponentially distributed) and some of the NIST tests (e.g.,
the serial tests that check if the overlappings of patterns across a sequence are
equally probable). The suite can exploit RNGs of the GSL, or takes in input
a sequence of bits or numbers. We conducted two different experimental cam-
paigns, the first to compare RandomDB against other RNGs (both pseudo and
true) and the second to evaluate the probability distribution of the elements
in a target domain. For the first campaign we compared RandomDB with the
mt19937 variant of the Mersenne Twister algorithm [10], the Linux shell ran-
dom number generator ($random) and the Linux random number generator
/dev/urandom as PRNGs. We also used the random.org16 and the Linux
/dev/random as TRNGs. With every RNG, we generated 10 sequences of 1000
numbers, 10 of 5000 numbers and 10 of 10000 numbers. For a more comprehen-
sive evaluation, each sequence has been tested with 4 different sample sizes (5,
40, 100, 250). The ratio between the sequence length and the sample size (i.e.
seq. length
sample size) defines a test case. This ratio is also an indicator of the complexity

15 http://www.phy.duke.edu/∼rgb/General/dieharder.php
16 http://www.random.org/

http://www.phy.duke.edu/~rgb/General/dieharder.php
http://www.random.org/

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7 8 9

A
bs

ol
ut

e
Fr

eq
ue

nc
y

Target Domain Elements

first test second test

Fig. 7. Frequency distribution for [0,9] integers in RandomDB.

to predict a random number since a larger sample size brings a smaller p-value,
for more details see [1]. Every test case has been tested with each of the 57
different tests within the Dieharder library and with α = 0.005 (so making the
tests harder than the default ones with α = 0.05). Then, we counted the times
that an RNG test case passed the verification out of the 570 launched tests, as
shown in Fig. 6.

We can see that in general the TRNGs perform better than the PRNGs.
RandomDB performs almost always better than the others. For sure, we can
say that it exhibits a reliable behavior, as if it is a TRNG. The second campaign
has been conducted to see if, in RandomDB, every number is equally probable.
We computed the frequency distribution of the target domain [0, 9]. We made
two extractions (i.e. we call them first test and second test) of 10000 numbers
and we counted the frequency. In Fig. 7 we show the frequency of each number.
It shows that the probability of all the numbers is uniform, i.e. we can consider
every element of the range equally probable.

5 Conclusions and Future Work

In this paper we presented RandomDB, a database system to generate reli-
able randomness via social phenomena. It exploits human-computer interaction
(HCI) and the data generated in social networks. RandomDB is highly flexi-
ble and easily embeddable in software applications. We prototyped RandomDB
and we conducted some experiments in order to show the effectiveness and the
advantages of the system. Experiments showed that RandomDB is reliable as a
TRNG in generating random data. Our first design of RandomDB is basically
constructed upon social Web data. We are individuating other fields that will be
used to “feed” RandomDB. For example data from sensor networks, since they
are more and more deployed on cities and environments to measure natural phe-
nomena. This opens future directions to data-recycling in many other contexts.
Moreover we are considering to introduce crowd sourcing techniques to improve
the effectiveness of our system. From a practical point of view, we are working

on the prototype in order to test it with the official NIST benchmark. In this
way RandomDB can be proposed for a wide-usage.

References

1. Bassham, III, L.E., Rukhin, A.L., Soto, J., Nechvatal, J.R., Smid, M.E., Barker,
E.B., Leigh, S.D., Levenson, M., Vangel, M., Banks, D.L., Heckert, N.A., Dray, J.F.,
Vo, S.: A statistical test suite for random and pseudorandom number generators
for cryptographic applications. SP 800-22 Rev. 1a. (2010)

2. Boyar, J.: Inferring sequences produced by pseudo-random number generators. J.
ACM 36(1), 129–141 (1989)

3. Chen, J.: The Physical Foundation of Economics: An Analytical Thermodynamic
Theory. World Scientific Publishing Company (2005)

4. Dorrendorf, L., Gutterman, Z., Pinkas, B.: Cryptanalysis of the random number
generator of the windows operating system. ACM Trans. Inf. Syst. Secur. 13(1)
(2009)

5. Franklin, M.J., Kossmann, D., Kraska, T., Ramesh, S., Xin, R.: CrowdDB: an-
swering queries with crowdsourcing. In: SIGMOD. pp. 61–72 (2011)

6. Galam, S.: Sociophysics: A Physicist’s Modeling of Psycho-political Phenomena.
Springer (2012)

7. Halprin, R., Naor, M.: Games for extracting randomness. In: SOUPS (2009)
8. La Cerra, P.: The First Law of Psychology is the Second Law of Thermodynamics:

The Energetic Evolutionary Model of the Mind and the Generation of Human
Psychological Phenomena. Human Nature Review 3, 440–447 (2003)

9. L’Ecuyer, P., Simard, R.J.: TestU01: A C library for empirical testing of random
number generators. ACM Trans. Math. Softw. 33(4) (2007)

10. Matsumoto, M., Nishimura, T.: Mersenne twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Trans. Model. Comput.
Simul. 8(1), 3–30 (1998)

11. Maurer, U.M.: A universal statistical test for random bit generators. J. Cryptology
5(2), 89–105 (1992)

12. de Raadt, T., Hallqvist, N., Grabowski, A., Keromytis, A.D., Provos, N.: Cryp-
tography in openbsd: An overview. In: USENIX Annual Technical Conference,
FREENIX Track. pp. 93–101 (1999)

13. Rapoport, A., Budescu, D.V.: Randomization in Individual Choice Behavior. Psy-
chological Review 104(3), 603–617 (Jul 1997)

14. Saito, T., Ishii, K., Tatsuno, I., Sukagawa, S., Yanagita, T.: Randomness and gen-
uine random number generator with self-testing functions. http://csrc.nist.gov/
rng/rng2.html (2010)

15. Von Ahn, L., Maurer, B., McMillen, C., Abraham, D., Blum, M.: reCAPTCHA:
Human-based character recognition via web security measures. Science 321(5895),
1465–1468 (August 2008)

16. Yilek, S., Rescorla, E., Shacham, H., Enright, B., Savage, S.: When private keys
are public: Results from the 2008 Debian OpenSSL vulnerability. In: Proceedings
of IMC 2009. pp. 15–27. ACM Press (Nov 2009)

http://csrc.nist.gov/rng/rng2.html
http://csrc.nist.gov/rng/rng2.html

