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Dealing with simplicial decompositions which are dimension independent allows for the conver-
gence of disparate viewpoints from computer graphics, solid and geometric modeling. In this
framework it is possible to treat in a unified manner several geometric problems, such as solid

modeling of articulated objects, simplicial approximation of curved manifolds, motion encoding
and interference detection, free configuration space computation, and graphical representation of
multidimensional data. In the paper the authora describe the winged scheme, a simple represen-
tation based on simplicial decompositions, which can be used for linear polyhedra of any
dimension and which allows for “solid” approximation of curved manifolds when combined with
curved maps (e.g., NURBS). Various operators and algorithms are discussed, including boundary
evaluation, linear and screw extrusion, grid generation, simplicial maps, and set operations. A
simple manipulation language is also introduced, and some nontrivial examples are discussed.

Categories and Subject Descriptors: 1.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling—curve, surface, solid, and object representations; geometric algorithms, lan-
guages, and systems; J.6 [Computer-Aided Engineering]: computer-aided design (CAD)

General Terms: Algorithms, Design, Theory

Additional Key Words and Phrases: Boolean operations, design languages, extrusion, n-dimen-
sional triangulation, polyhedra, representation, simplicial complexes, simplicial maps

1. INTRODUCTION

Statement of the problem and motivation. In this paper several methods of
3D graphics and modeling are extended to work with polyhedra of dimension
d in !Ii’. A simplicial-based representation is presented, and a symbolic
description is given for structured sets of dimension-independent polyhedra,
along with operators for object manipulation and a language to be used as an
interface to the modeling system. With the presented methods it is possible to
unify the geometric treatment of problems arising in different areas, includ-
ing solid modeling of articulated systems, simplicial approximation of curved
manifolds, motion encoding, and interference detection between mobile ob-
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jects and the environment (both static and dynamic). In addition, it becomes
also possible to represent—in a single higher-dimensional polyhedron—the
whole set of configurations assumed by a mobile system with some degrees of
freedom.

Dimension (or order) d of a polyhedron is the highest dimension of the
simplices contained in it, that is the maximum number of aflinely inde-
pendent vertices, which span some polyhedron portion, minus one. The di-
mension of the embedding space coincides with the number n k d of the
coordinates of vertices. The range of interest in the paper is restricted to
piecewise-linear polyhedra, which can be collected into structures together
with operators on structures. The representation scheme we propose for
polyhedra is based on simplicial complexes; curved polyhedra can be linearly
approximated by simplicial maps, which are pairs constituted by a simplicial
complex (often a d-dimensional grid) and a homomorphic map.

The presented approach allows for the convergence of viewpoints from solid
and curved geometric modeling. In this paper, parametric representations of
curved manifolds and NURBS are defined as maps between spaces of polyhe-
dra. In other words, a polyhedral approximation—with a desired resolution
—of a curved object is seen as the mapped image of a suitable polyhedron in
the space of parameters. Since a “solid” representation of the mapping
argument is used, a ‘(solid” representation of the resulting object is obtained.
Where an improved resolution is required, it is sufficient to locally refine
(e.g., using baricentric subdivision) the simplicial representation of the para-
metric argument. The separation of the mapping definition from its applica-
tion to some polyhedral argument is very useful; in particular, it makes
possible: (a) to map a lower-dimensional subset of the parametric domain,
e.g., to evaluate a curve defined on a surface; (b) to generate a trimmed patch,
e.g., a trimmed NURBS, given a polyhedral approximation of its trimmed
parametric domain; (c) to build a multigrid approximation, where grids of
different resolution are defined on subsets of the mapping domain.

Simplicial decompositions have seldom been seriously considered for the
representation of objects in a general-purpose solid modeler because of their
main drawback: the fragmentation caused by Boolean operations. It should
be pointed out, that when dealing with multidimensional objects, different
approaches such as B-reps with Boolean operators based on boundary classi-
fication suffer grave efficiency problems, as they need to recurse on all
elements of the boundary, from maximum- to zero-dimensional ones. On the
contrary, the use of simplicial complexes allows us to approximate in a
natural way curved manifolds, to exploit the straightforwardness of the data
structure for the design of simple algorithms, and to take advantage of
linear-programming methods for the solution of geometrical problems, such
as intersection, interference detection, and point classification. Furthermore,
the use of simplicial decompositions can be considered as a preliminary step
toward the introduction of more general complexes, where cells are convex or
afflne sets, both of which allow as well the use of linear-programming
techniques while maintaining compact storage.

The extension of solid-modeling techniques to higher dimensions also intro-
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duces very simple and general methods for the representation and rendering
of fields, since a field over a manifold can be modeled by embedding the
manifold in a higher-dimensional space. Consideration of the field variation
within a simplex is important for achieving the desired accuracy in the
piecewise approximation with simplicial complexes. In this setting, the evalu-
ation of “geometrical queries” over fields, e.g., the computation of subsets of
points which satisfy a predicate calculus formula (where atomic sentences are
relational expressions with field variables), can be reduced to the computa-
tion of Boolean formulae between d-dimensional manifolds. As an example,
consider that an iso-valued surface of the temperature in a solid results from
the intersection between a temperature hyperplane T = const (a 3-manifold
in the x, y, z, T space) and a model of the solid embedded in such 4D space,
where the T coordinate has been added to the vertices of the solid.

In addition, we believe that the present approach may help to reduce the
gap between solid modeling and engineering computation with finite-element
codes and multigrid methods; e.g., the domain discretization used in a FEM
computation can be easily translated in a decompositive object represen-
tation, while the field values (both scalar and vector- or tensor-valued)
computed at the “nodes” can be stored as additional coordinates of object ver-
tices, when the grid used for the field computation is given. The reverse is
also possible, of course: the object representation obtained with simplicial
maps and set operations can be used as a domain decomposition for field
computations.

In general, the triangulations we use are not minimal. The rationale for
this hypothesis is that triangulations of polyhedra currently used in
CAD/CAE applications are strongly redundant. The modeling triangulations
can be locally improved (changed or detailed) for both robustness reasons and
for the needs of finite-element computations, where triangulations are often
required as a refinement of some redundant mesh. The cost of generating an
optimal triangulation for a nonconvex multidimensional polyhedron may be
prohibitive. A recent result by Ruppert and Seidel [60] has shown that the
tetrahedralizability problem is NP-complete (even) in 3D space. This implies
that the operators to be subsequently described must directly generate an
(eventually redundant) triangulation of the resulting polyhedron—see, e.g.,
boundary and extrusion operators.

Previous work. New needs for visualization, manipulation, and reasoning
with multidimensional surfaces and solids are emerging from scientific visu-
alization, statistical graphics, modeling and simulation, and robotics. The
extension of basic techniques of computer graphics for the wireframe display
of n-dimensional objects was provided by the early works of Nell [42, 43].
Burton and Smith [ 12] describe a hidden-line algorithm for higher-
dimensional scenes. Armstrong and Burton [1] present various graphical
techniques based on visual cues, for improving the comprehension of “hyper-
dimensional” objects. Banchoff [4] discusses the real-time presentation of
four-dimensional objects and extends [5] standard algorithms of computer
graphics (like Gouraud shading), in order to obtain a good rendering of 4D

ACM Transactions on Graphics, Vol. 12, No. 1, January 1993.



Dimension-Independent Modeling with Simplicial Complexes . 59

objects. Glassner [28] gives efficient techniques for ray tracing of animated
scenes, where static objects in a 4D space-time are rendered instead of
dynamically moving objects in a 3D space. Graphical display of rational
algebraic hypersurfaces is studied by Bajaj [3], and visualization techniques
for surfaces in 4D space are presented by Hoffmann and Zhou [32].

Solid modeling, usually performed in three dimensions [54, 55], was re-
cently extended to the modeling of n-dimensional solids (n z 4). Cameron
[ 13, 14] started working in 4D in order to detect collisions between obstacles
and a robot moving in a known environment. Cattani and Paoluzzi [ 16]
discussed the extrusion of an object into the space-time, which exhibits more
convenient properties than the sweeping within the embedding space. They
also presented preliminary ideas about extrusion and set operations in !)i”
using simplicial complexes. The higher-dimensional approach to the descrip-
tion of objects and motions was already proposed by Lozano-Perez and
Wesley [36], where each degree of freedom is associated to an independent
dimension of the embedding space. Putnam and Subrahmanyam [52] and
Montgomery [39] construct a CSG approach for multidimensional linear
solids. Putnam and Subrahmanyam define set operators through boundary
classification techniques, assuming no distinction between different entities
(vertices, edges, faces, and so on). Their representation consists of a list of
oriented boundary elements, where each element recursively contains the
description of its boundary. This approach is very simple, but the description
is not efficient neither in space nor in time. In fact, depending on the number
of elements it belongs to, each boundary element is stored in memory many
times. Furthermore, since topological relationships are not explicitly stored,
any topological query is answered in linear time with the size of the object
description.

A complete characterization of the adjacencies in a cell decomposition of an
n-polyhedron is given by Lienhardt [34], who extends to n-dimensions the
concept of a topological map usually given in two dimensions, where it is used
to establish dualities between graphs embedded into surfaces. Brisson [ 10]

defines the cell-tuple structure, where a complete representation both of
incidence between various order cells and of cell adjacency in a subdivided
manifold of dimension n z 1 is given. Such a set of cell-tuples is a kind of
“vertical” description of the object topoIogy, where each cell-tuple is consti-
tuted by a sequence of incident cells of various dimensions d (O s d s n ) and
where each d-cell is contained in the boundary of the (d + 1)-cell. Tuples are
implemented as ( n + 1) arrays of pairs of indices, where the first index points
to the constituting cells, and the second one is used to implement a switch
operator to an adjacent cell-tuple. Brisson shows that cell-tuple representa-
tion is equivalent, in dimension 2 and 3, to the quad-edge data structure of
Guibas and Stolfi [29], and to the facet-edge data structure of Dobkin and
Laszlo [21]. The cell-tuple representation portrays in a uniform way the dual
subdivision of a topological manifold and can easily calculate ordering infor-
mation from switch operators (see also [35]). Brisson’s approach is elegant
and powerful; a major drawback is the factorial growth with n of the
cardinality of the set of cell-tuples.
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Nef [41] and later Bieri and Nef [9] conceive polyhedra as finite Boolean
expressions using halfspaces in order to perform set operations on n-
dimensional polyhedra. Their approach can be summarized as follows: (a) the
concept of “locally adjoined pyramid is introduced, which allows us to
conveniently define the notion of face of a nonconvex polyhedron; (b) a set of
elementary operations over pyramids is given, in order to define an abstract
data type pyramid; (c) algorithms over pyramids lead to the implementation
of set operations (complement, union, intersection, difference) over polyhedra;
(d) pyramids are in turn represented by means of subsets of the cell complex
induced in !){n by the set of the face hyperplanes. Bieri and Nef’s approach is
very interesting, but one drawback is that the cell complex implementation of
pyramids is 0(m) in space for each cell, where m is the number of hyper-
faces. A variation of CSG oriented to cell decompositions has been used by
Zhang [67] in the 3D EASYCAD modeler.

Rossignac and O’Connor [57] developed the powerful dimension-
independent SGC (Selective Geometric Complexes) representation., in the
attempt to extend the geometric coverage of geometric and solid modeling
over curved pointsets with internal structures and incomplete boundaries.
Their representation supports mixed-dimensional collections of disjointed
open cells of real algebraic varieties. Three fundamental algorithms concern-
ing compatible subdivision, selection, and simplification of cells are used to
easily define standard solid-modeling operations, such as interior, closure,
regularized Boolean, or user-defined operations. Constructive Non-Regu-
larized Geometry (CNRG), a modification of CSG, has been proposed by
Rossignac and Requicha [58] to allow for the representation of dimensionally
inhomogeneous pointsets of !li n. In a CNRG tree, the leaves correspond to
regions which are nonregular semianalytic subsets of !l n, and internal nodes
represent CNRG objects obtained by applying Boolean, topological, or filter-
ing operators to the objects represented by the child nodes. Operators are
carefully defined to ensure that information is not lost in manipulating
objects of mixed dimensionality and/or with internal structures.

The work of the CAD Group at the University of Rome focused on the use of
simplicial complexes in solid modeling with the development of the 3D solid
modeler Minermr [ 17, 45], where a simplicial decomposition of the boundary
was used. Such a representation has been generalized to 4D [15] and to the
nD winged representation [16]. The winged representation is simple and
useful for actual implementations: most of the materials presented here have
been implemented in a prototype modeler called Simple: [6, 22, 49]. Various
papers describe algorithms based on such a representation for motion plan-
ning [44], extrusion and boundary evaluation [24], integration of polynomials
over simplicial complexes [7], Boolean operations [23], spatial indices [25],
simplicial maps and rendering of fields over manifolds [48], and polyhedral
approximation of parametric and NURBS maps [49]. A calculus over polyhe-
dra (with higher-level operators, not described in this paper) has been
introduced in the context of the PLASM design language [46, 47] based on
Backus’ functional language FL [2].
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Paper overview. In Section 2, a minimum amount of notation and notions
from algebraic topology, needed in the following, is introduced. Then, the
winged representation is defined and discussed with examples. In Section 3,
the syntactic rules of a simple description language are given, and the
evaluation of a structure is discussed. In Section 4, the semantics of several
classes of operators is discussed, including: afflne ti-ansformations;
connected-components extraction; boundary evaluation; straight, linear and
screw extrusion; grid and map operators for piecewise-linear approximation
of curved manifolds; NURBS maps and projection. Set operations are illus-
trated in Section 5, point-in-polyhedron testing and integration over a polyhe-
dron in Section 6. In the conclusion the features of the presented approach
are summarized; the main open problems are discussed, and some possible
extensions are outlined. Examples of the winged representation of d-
dimensional cubes are given in Appendix A, and an application to the
modeling and visualization of a time-varying field over a manifold is con-
tained in Appendix B. Finally, in Appendix C, two high-level operators for the
description of the set of configurations of articulated rigid systems are
introduced, and an example of free configuration space computation is pro-
vided, A glossary of mathematical symbols concludes the paper.

2. THE WINGED REPRESENTATION SCHEME

In the following, we give a brief summary of concepts and notation used in
the following sections. An easily readable treatment of algebraic topology can
be found in [27]. Other useful references are [33], [53], [59], and [65].

2.1 Some Background

Solid and geometric modeling find the origin of their methods within the
realms of numerical analysis, differential geometry, and real algebraic geom-
etry. Only few attempts to cross the edges of these domains can be found in
the literature (see, e.g., [53], and more recently [10] and [34]). In our
approach we make use of a few fundamental concepts from algebraic topol-
ogy. The source of this paragraph is Dieudonn6 [20].

The study of compact triangulated spaces started with Poincar6’s papers
[51]. Given a triangulation T consisting of cells homomorphic to convex
polyhedra, p-chains were defined as formal linear combinations with integer
coefficients of oriented cells of T. To obtain the boundary operator on a
triangulation it was sufficient to formally combine the boundary operators
defined on cells of T. Poincar& [20] was guided in the definition of the
boundary operator by the intuitive idea that “a boundary has no boundary.”

As any subdivided triangulation of every cell into smaller cells gives the
same “homology”, it is sufllcient to consider simplicial cell complexes, where
each cell is a simplex, a sort of d-dimensional triangle in !11n (d < n). To
define such a simplex it is sufficient to know its vertices. Brouwer [ 11]
introduced the notion of simplicial mapping f: K -+ L, where K and L are
simplicial complexes, such that, for each simplex u of K, f( o ) is a complex of
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L, and the restriction of f to u is at%ne. This implies that f is entirely
determined by the images f(v, ) of vertices of K, which are vertices of L. An
even more important idea of Brouwer concerned simplicial approximation:
for two triangulated spaces X, Y and any continuous map f: X - Y it is
possible, for each ● >0, to find subdivisions of the triangulations of X and Y
and a simplicial map g : X + Y relative to these subdivisions such that the
distance of f and g is at most ~ and such that f and g are “homotopic.” It
was proved around 1930 that Cl manifolds and algebraic varieties with
singularities can be triangulated, as conjectured by Poincar6.

In this paper we will not be involved with the central concepts of homology
and homotopy, but just with the combinatorial instrumentation of simplicial
complexes and with simplicial mapping and approximation.

2.2 Preliminaries

The join of two sets P, Q c !)/” is the set PQ = {yp + Aq, p G P, q = Q},
where y, A ● !Ii, y, A > 0, and -y + A = 1. The join operation is associative
and commutative. A simplex cr c !)i” of order d, or d-simplex, is the join of
d + 1 afilnely independent points, called vertices. The n + 1 points PO,. . . . pn
are afflnely independent when the n vectors PI – p., . . ., pn–POare lin-
early independent. A d-simplex can be seen as a d-dimensional triangle:
O-simplex is a point, l-simplex is a segment, 2-simplex is a triangle, 3-
simplex is a tetrahedron, and so on. Any subset of s + 1 vertices (O < s < d)
of a d-simplex a defines an s-simplex, which is called s-face of u.

A simplicial complex is a set of simplices Z, veriffing the following condi-
tions: (a) if u ● Z, then any s-face of u belongs to Z; (b) if a, ~ = Z, then
either a n T = 0, or a n T is an s-face of a and ~. Geometric carrier [L] is
the pointset union of simplices in Z.

The order of a complex is the maximum order of its simplices. A complex Zd
of order d is also called a d-complex. A d-complex is regular if each simplex
is an s-face of a d-simplex. Two simplices ml and crz in a complex E are
s-adjacent if they have a common s-face; they are s-connected if a sequence of
simplices in Z exists, beginning with WI and ending with crz, such that any
two consecutive terms of the sequence are s-adjacent. In the following, face
and adjacency (without prefix) of a d-simplex stand for (d – 1)-face and
(d – I)-adjacency. K’(Zd) (O < s s d) denotes the set of s-simplices belong-
ing to Xd, and IK’ ( denotes their number. With some abuse of language, we
call K’ the s-skeleton. The set of vertices of Ed is therefore KO(Zd ), and the
set of d-simplices is Kd(Xd ).

The set of all linear d-polyhedra embedded in !Iin will be denoted as ~d’ n.
A polyhedron P = ~d’ n coincides with the geometric carrier of a simplicial
d-complex, and we write P = [z~ ]. As an extreme example, o ~&@”’0 is the
O-polyhedron consisting of a single point—the set 9°’0 is a singleton and
contains only o. A polyhedron is regular if any associated complex is regular.
The boundary iIP of a regular polyhedron P = [Ed] is the geometric carrier of
a (d – I)-complex whose (d – 1)-simplices are faces of exactly one d-simplex
in Ed. Notice that if P is regular then &?P = 0. The set of vertices of a
polyhedron P = [Zd ] is defined to be KO(Xd) and is concisely indicated by
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Fig, 1. Coherent orientation of the 2-faces of a 3-
simplex.

2

‘1

KO( P). Notice that such a set of vertices may be redundant (e.g., lying in the
interior), according to the use of “nodes” in FEM decompositions. For sake of
brevity, we will occasionally soften the distinction between the polyhedron
P = .L@(ln and an associated complex: the meaning of KS(P) is “the s-skeleton
of Zd such that [E(i] = P“.

The choice of an ordering for the vertices of a simplex implies its orienta-
tion, according to the even or odd permutation of the ordering. The two
opposite orientations will be denoted as + u and – (r. A complex is orientable
when all its simplices can be coherently oriented. The oriented (d – 1)-faces
of the d-simplex [J, = (u,, o, . . . . I+ ,i ) are given by the formula:

,,,, =(-l) J(U,,O,.... U,,, I,q,j,l,.. .,q, {i), Osjsd,(J’ (1)

where u, ~ and vl 1 denote the jth face and the jth vertex of u,, respectively.
A similar notatio~ for the oriented (d – 1)-faces of a d-simplex is attributed
by Dieudonn& [20] to Eilenberg and Mac Lane. Two adjacent simplices are
coherently oriented when their common face has opposite orientations (see
Figure 1).

2.3 Winged Representation

A complete representation scheme [54] for a regular d-complex can be simply
obtained by giving the list of its maximum order simplices, that is, its
d-skeleton Kd, since any lower-order simplex can be extracted by repeated
applications of Formula ( 1). Although complete, this representation is highly
inefficient, as it takes at least 0( IKd]) to answer any topological query. It is
useful to enrich the scheme by explicitly storing maximum-order adjacencies,
since this improves the efficiency of the traversal of the representation. Thus
we state the following:

Definition 1. The Winged Representation ‘W(Z’i ) of a regular complex Z’i
is a pair ( K’i, ,ti), where K~ is the d-skeleton of the complex, and .ti: K~ -
X d. 1(K’f U { 1 ) ) is an adjacency function, which associates each d-simplex
with the (d + 1)-tuple of d-simplices that are (d – 1)-adjacent to it. The
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.

~ O-simplex

Fig. 2. A polyhedron with an associated simplicial complex, and its winged representation

complete representation of adjacencies is restricted to the (quite large) sub-
class of regular complexes such that a (d – I)-face is adjacent at most to 2
d-simplices.

Here, the symbol L stands for “no adjacency,” and the notation Xd, ~S
represents the Cartesian product of d + 1 instances of the set S. The
notation ti~( o--) will be used to indicate the hth value in the adjacency tuple

M UP), i.e., the d-simplex adjacent to O-Palong its hth face.
The winged representation of a complex (see Figure 2) can be implemented

with a two-dimensional array of reals (the coordinates of vertices) and a pair
of two-dimensional arrays of pointers (to represent topology). If Zd is embed-
ded in $)i”, each of its IKOl vertices has n real coordinates, and each element
in Kd requires 2(d + 1) pointers to its vertices and its adjacencies. There-
fore, the winged representation %’lld) of a complex Zd embedded in 91n is
stored in a memory area of size

nlKOl(#r) + 2(d + 1)1K~l(#p),

where #r and #p are the sizes of the memory representation of a real
number and of an integer pointer, respectively. Finding a common face
between two given (d – I)-adjacent d-simplices requires to scan the adja-
cency pointer array for one of the two simplices, with a cost of O(d).

The winged representation can be seen as a paradigm which unifies diverse
kinds of representation schemes for polyhedra (see Figure 3). In particular, it
can be used as a boundary representation (as in the 3D modeler Minerwz
[45]) and as a decompositive representation, needed to perform finite-element
analysis in CAD/CAE applications and useful to execute extrusion opera-
tions.

Definition 2. The Decompositive Winged Representation WP) of a poly-
hedron P = EZJd”,such that P = [Xd], is given by %’_(Ed).

Definition 3. The Boundary Winged Representation z,(P) of a polyhedron
P •~~n(d > 2), such that c?P = [Xd-l], is given by %( Zd- l).
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Fig, 3. Decompositive versus boundary representation

Notice that a boundary representation of P ● @~ n makes sense only when
d k 2, as only in this case the (d – 2)-adjacencies used in the %,;(P) repre-
sentation are well defined. The evaluation of ~,( P ), given %(P), is discussed
in Section 4.3. Notice also that given P c JPd’R, a boundary winged represen-
tation of P coincides with a decompositive winged representation of JP, the
boundary of P:

‘Y,;(P) = ‘w(dP).

The Y” representation scheme is not unique, since it is possible to associate
different triangulations (of the interior or of the boundary) to the same
polyhedron; it is complete because only one polyhedron coincides with the
geometric carrier of any ‘X” representation. The represented polyhedra, in
both cases, may be disconnected, and each connected part maybe bounded by
more than one shell. The winged representation is somewhat similar to
Brisson’s cell-tuple [10], because both representations have tuples of length
2(d + 1) pointing to cells and to adjacent cells. Differently from the cell-tuple
data structure, the winged representation is “horizontal,” maintaining an
explicit storage just of d-simplices and of their adjacencies, while lower-order
oriented simplices can be computed recursively.

In considering 3D boundary representations, one may ask why to use a
triangulation of the boundary. It is the authors’ opinion that to use a
simplicial decomposition of the boundary makes sense because it does not
require to describe recursively all the boundary faces of any dimension. In
fact a 2D face can be either represented by a decompositive representation (a
2D triangulation) or by using an edge list (a ID simplicial description), which
are both of linear size with respect to the number of vertices of the face. One
may argue, in this case, that there is no reason to prefer one representation
to another, but when the dimension of the object grows, the difference
becomes evident. In fact, in a decompositive representation of the boundary
only maximum-order simplices appear. Conversely, by using a “pure” bound-
ary representation, it is necessary to describe the boundary by extracting its
hyperfaces, then to describe the boundary of each hyperface, and so on, in a
recursive way.
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‘4

‘1

‘3

‘o

‘2

‘J4

VI

‘2

Fig. 4, A 3D wedge P: w(P) and ‘Y;(P).

Example 1. The decompositive winged representation ~ P) of the wedge
P in Figure 4, along with the boundary winged representation %;(P), are
given by listing the maximum-order simplices and the relative adjacency
tuples. Remembering that if UP,~ is a boundary face, i.e., if O-P has no
adjacent simplex along its hth face o--,~, then .@~(aP) is conventional y set to
L , we have:

where, for example, &o( UO) = ml, with mo,o = + ( U2, U., U4), and so forth. For
the boundary winged representation w,(P):

Uo, l = –(UI, UO, U4)

0_~,2 = +( U~, U2, U4)

U0,3 = –(q>uz, uo)

al,~ = –(U2, U4, U5)

0,,2 = +( U2, UO, U5 )

U2,0 = +( V4>V5>U3)

U2,1 = –(UO, U5,U3)

U2,2 = +( U(), U4, U3)

Notice that, since JP is a closed (without boundary) polyhedron, each 2-
simplex of the boundary has always three 2-simplices l-adjacent to it,

Let us compare the sizes of three different representations of the topology
of the wedge P in the above example, without considering the size of the set
of vertices, which is the same for all of them. Note that the topology
description in %’1P) has half the size than in %(P), and one third of the size
of the winged-edge representation of the same object.
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Winged-edge representation. The memory size of the main relation of
Baumgart’s winged-edge representation is 81EK#p) = 72( #p), where E is the
set of original edges.

Boundary winged representation. The size of the topology of the represen-
tation 7,;(P) is 2 “ 31K2 l(#p) = 48(#p).

Decompositive winged representation. The size of the topology of the
representation ‘xI P) is 2 “41KsK#p) = 24(#p).

In the following we are mainly concerned with decompositive representations
of polyhedra.

3. DESCRIPTION IANGUAGE

We introduce a simple language for the definition and manipulation of
structures, which are defined as ordered sequences of expressions containing
polyhedra, operators, and structures, together with angle delimiters. A more
powerful language, embedded within Backus’ FL functional language, is
described in [46] and [47]. The aim of the simple language presented here is
to give a framework for the modeling tools to be described in the following
and to unify the presentation of examples.

A structure is defined as follows, using EBNF notation:

structure::= polyhedron operator structurel”( “structure{ “,”structure}”)”

where polyhedron is a primitive object. If ( S1, S2, Sq ) is a structure, then S1,
Sz, S:] are called its substructures or elements. One can write structure-
identifier “ = “ structure to assign a name to a structure.

In the paper we distinguish between operators, which work on structures,
and mathematical operators, which work on the underlying polyhedra. Com-
position of mathematical operators is denoted by the infix symbol o. The
syntax for operators (where, as usual, square brackets denote optional terms)
is

operator ::= generic-operator[’ n~’”’” 1[”(“parameters’’)”]! set-operator.

A generic-operator takes a structure as argument and, when evaluated,
results in a structure. Let S be a structure. During the evaluation of
generic-operator over S, three cases may occur:

—S is a polyhedron: the evaluation takes place, and the polyhedron is
transformed according to the semantics of the underlying mathematical
operator, resulting in a new polyhedron or structure.

—S is a structure beginning with an operator: the innermost operator is
evaluated, and then generic-operator is applied to the result.

—S is a list of substructures: the evaluation results in a new structure,
obtained by recursively applying generic-operator to each element of S.

The only restriction to be imposed on S is that, once each substructure has
been evaluated, all the resulting polyhedra must be embedded in the same
space. Rules for the evaluation of set-operator are given in Section 5.
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The optional indices specifier is a sequence of integers referring to the
elements in the structure. If no indices are supplied, then the operator is
applied to each element. If some indices are given, the operator is applied to
the specified elements, while a default operator is applied to the others. The
purpose of the default operator is to maintain consistency of the embedding
space dimension of substructures. The default operator may be the operator
Identity, that returns the same structure to which it is applied.

Notice that, for sake of simplicity and without loss of generality, an
operator applies only to its argument and does not apply to each following
substructure, as customary in graphics; e.g., a PHIGS-like structure as

(A, T, B, C ), where the transformation T is applied both to B and to C, is
written, according to our syntax, as (A, T{ B, C)). A list of the operators to be
described in the following is

generic-operator::= ''ldenti~''VSeled''~Translate''VRotate''YShear''YScale''l
''Components''YBounday''YEtirude''YScrew''YEmbed''VGtid''TMap''l"NURBYl
“Project’’vMove”~Joint”
set-operator:= “Union’’l”lntersect’’l”Difference”

The operator Identity returns its argument unchanged. The operator Select,
with no parameters, returns the elements with specified indices in a struc-
ture. S,,,,,,,,n will be used as syntactic “sugar” for Selecti” ~‘‘“S. The opera-
tors Move and Joint are described in the Appendix C.

Example 2. If A =92’3, B, C =~3’3, u, G M4 and LJz,U3 = !N3, an exam-
ple of legal structure definition is:

S = Union
Extrudel’2(ul, 1)
(A, Translate, B,
Translate(u~)(C, Rotate(l, 2, a)C))

S is the polyhedron resulting from the union of the extrusion of a collection of
some aflinely transformed polyhedra.

4. OPERATORS

In the following subsections a description of the semantics of each operator is
provided. Typewriter-like characters are used to denote operators over struc-
tures, while upper-case italic or standard mathematical symbols are used for
mathematical operators over polyhedra. For the sake of clarity, an informal
style is used for the semantics specification.

4.1 Affine Transformations

Affhe transformations are used to relocate or stretch objects in space. For the
examples to be developed consequently it suffices to define translation,
elementary rotations, shearing, and scaling. Since the semantics of these
operators is well known, only the corresponding syntax is given.

The mathematical operator for Translate, which takes as parameter the
vector t ● m‘, is the usual translation, that we consider as a bijective
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mapping T, : .@d’ n - ~~”. Similarly, a scaling mapping S. : @d n - Pd n is
associated to the operator Scale with parameter s E !)i’. The operator Hotate,
with parameters i, j, which identify the rotation plane, and rotation angle a,
corresponds to the elementary rotation Ri, j,,, in !Ii’, where R,,,, ,, is defined,
as in [42], in such a way that only the coordinates x, and XJ are changed. The
transformation matrix for the rotation R,,l,,, differs from the identity matrix
n x n only for the elements r,, = cos a, rj, = sin a, r,, = —sin a, rj,, = cos a.
The operator Shear, with parameters i and shearing vector h E !Iin 1, is

. ~d, n d .pd, n, with respect to theassociated to the shearing mapping H,, ~ .,
coordinate x,. The shearing matrix relative to H,, ~ differs from the identity
matrix only for the ith column, which is [hi,...,h, ~, 1, h,, . . ..h. ~]r.

When the indices specifier is supplied, the default operator to be applied to
the nonspecified elements of the structure is Identity.

4.2 Connected Components

The operator Components, when applied to a polyhedron P = :@’l n, gives as
output a structure S which represents the set of its (d – I )-connected
components.

When %(P) is given, connected components will be extracted by computing
a set of equivalence classes of simplices under the (d – 1)-connectivity rela-
tionship. In order to determine a connected component it is therefore suffi-
cient, starting from any d-simplex u, to recursively traverse the representa-
tion and collect d-simplices by using the adjacency function, while marking
each encountered d-simplex. When it is not possible to find an unmarked
adjacent d-simplex, the extraction of the connected component is completed.

Let us denote the input polyhedron as P = .Yd n, and the set of connected
components of P as S. The algorithm CollectComponents, with input 71 P )
and output S, calls the recursive algorithm GetAComponent, which receives
the d-simplex u E K’~( P ) as input and gives as output the d-skeleton and
the adjacencies of the (d – 1)-connected component containing u. Pseu-
docode are given in Table I.

Notice that the connected-component extraction has complexity 0( d] Kdl),
since the procedure GetAComponent is called 0( IKd 1)times. The same kind
of recursive traversal of the representation can be used to extract the
polyhedron subsets satisfying different properties, e.g., to extract the shells
or the hyperfaces of a boundary representation Y,;(P), where hyperfaces are
defined as maximal (d – 2)-connected subsets of simplices belonging to the
same afflne subspace.

4.3 Boundary

The boundary operator is a mapping d : #’dS” - .@d 1” from the set of
d-polyhedra-with-boundary to the set of (d – I)-polyhedra-without-boundary.
If P = [Z’~], then the polyhedron dP is the geometric carrier of a (d – l)-
complex whose (d – 1)-simplices are faces of exactly one d-simplex in Zd.

The algorithm for computing the boundary representation ‘x,( P) when the
decompositive representation Y“( P) is given is detailed in [24]. A direct
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Table I. Pseudocode for the CollectComponents and GetAComponent Functions

algorithm CollectComponents (input: ‘&l P);output: S);
s := ();
foreach a = K~(P) do

if not Marked(a) then
@ := 0; A := 0;

GetACornponent (u, Kd, A);
S := S u ((Kd, A))

algorithm GetAComponent( u, Kd, A);
Kd := Kd u (a}; A := A U.da);
Mark(u);
foreach a’ =@(a)do

if not Marked( a‘) then
GetAComponent(cr’, Kd, A)

representation of boundary faces is explicitly embedded in the decompositive
winged scheme: for each L value in the adjacency tuple Mu), the corre-
sponding (d – I)-face of cr is a boundary face of P. This implies that the
skeleton Kd -1( i?P) can be evaluated in O(ds ) time by scanning WI P) and
examining (d + 1)s adjacency values, where s = lKd(P)l.

Some more work is needed to compute adjacencies between (d – I)-faces in
~P. One possible method is to compute Yd( P) by a composition operation of
the representations W duP), H Jw~) for each adjacent pair ~P, u~ = Kd( P).
The operation, a kind of “sewing,” eliminates the common (d – I)-face of ~P
and Vq and appropriately crosses the adjacencies in duP, du~. Actually, lt
turns out that it may be necessary during the incremental construction of
%’_(3P ) to execute more than one sewing operation at a time. Such a composi-
tion can be performed efficiently because both Kd - l(du) and the (d – 2)-
adjacency function .@: Kd - 1(~cr) -+ x d Kd - 1(~a ) can be computed with
closed formulae [24].

Pseudocode for boundary evaluation is given in Table II, where Kd - 1 and
A denote a set of faces and of adjacency tuples during the construction of
‘w(JP). The set of (d – 2)-adjacency tuples in the boundary of crP= K~(P) is
denoted as M &rP).

The operator Boundary, with no parameters, results in the boundary map-
ping J : Pd’n + @d -1’ n. The default operator for Boundary, when applied to a
subset of elements in a structure, is Identity.

4.4 Extrusion

Gaspar Monge used the sweeping operation in the 18th Century, as a method
for generating curves and surfaces by moving a point or a curve, respectively.
When sweeping is applied to space curves or surfaces, it produces space
surfaces or solids, respectively. Sweeping, extrude, and revolve operations are
largely used in CAD systems (see, e.g., Pegna [50] and Weld [64]). In this
section we analyze the translational extrusion of a polyhedron, which can be
considered a basic operation to generate higher-dimensional polyhedra.

ACMTransactions on Graphics, Vol. 12, No. 1, January 1993.



Dimension-Independent Modeling with Simplicial Complexes . 71

Table II. Pseudocode for the Boundary Function

algorithm Boundary(input: ‘7(P); output: %,;(P ));
K,i l,=~; A,=O;

foreach q, E K’i( P) do
if not Marked( o--) then
A ,= A U.dikrl,);

Mark( ,1,);

foreach v’,,(u,,) E.IZ’(UP) do
if not MarkedAdjacency@’k( crP)) then
case .W~(ml,) of

1:
K,f 1 = K~ 1 U (U,,, h};

(~{ where .CY’A(qg) = (TP:
if not Marked( Uq) then
A ,=A U.d7aq);

Mark( ,r~);
Sew( A, (~p,~, [~~,~ );
MarkAdjacency(.ti~( q. ));

if K(l 1 = 0 then Y;(P) ,= (0,0)
else Y,;(P) = (K’] 1, A)

Fig. 5. Sweeping versus extrusion

Sweeping generates the subset of the embedding n-space spanned by a
moving d-dimensional object. Conversely, extrusion maps a d-dimensional
object, embedded in !Iin, into a (d + I)-dimensional object in !11n ‘ 1, and can
be used to describe pointsets that are the product of a polyhedron times an
interval. The volume swept by a polyhedron coincides with the projection of
its extrusion from !1/” +1 back onto !)1’.

The set obtained by extruding a regular polyhedron is a regular polyhe-
dron. Also, boundary points are mapped into boundary points of the resulting
polyhedron. This is not generally true in sweeping, where the object is swept
within an embedding space of the same dimension (see Figure 5).

The single-step straight extrusion El(P) is defined as a mapping
El :,fl(l.{l ~<u~d+l.n+l such that El(P) = P x 1, where 1 is the unit interval
[0, 1] c !Ii and K“(E,(P)) = K“(P) x {O, 1).

Extrusion of a simplex. In the following we show a simple combinatorial
rule to generate a simplicial chain whose geometric carrier is the set rr X Z
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Fig. 6. Extrusion of (a) a point; (b) a ‘1
straight line segment; (c) a triangle.
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resulting from the extrusion of the d-simplex m c !ltn. The generating rule is
introduced by examples. Consider the extrusion of a simple simplex. a
O-simplex (point) generates a chain with one l-simplex; a l-simplex (straight
line segment) gives a chain with two 2-simplices; a 2-simplex (triangle)
produces a chain (wedge) with three 3-simplices; and so on (see Figure 6). A
generalization of the above examples suggests a rule for computing a simpli-
cial chain which triangulates the convex set u x Z generated by an oriented
d-simplex o. In particular, the skeleton Kd +1(u X 1) contains d + 1 coher-
ently oriented (d + 1)-simplices ri, which are generated by the combinatorial
formula:

Kd’l(ax l)={~i: ~i=(–l)’d(ui,... ,v~, u;,..., v~), O<i <d} (2)

where v, E KO( u X {O)), v? E KO( a x {l}). A similar triangulation rule is
given by Whitney [65, p. 365].

The i exponent in the factors (– l)i~ in Equation (2) is needed because
otherwise the rule would generate a set of simplices having, alternatively,
opposite orientations; the d exponent, due to the even or odd simplex order,
takes into account the number of exchanges between the simplices T, and
?i+ ~.

Any pair of simplices Ti, 7i, ~ = K~ +1(a x 1) is d-adjacent, as ~i and Ti. ~
have a common d-face. This common face is constituted in Ti by the last
d + 1 vertices and in ~i, ~ by the first d + 1 vertices. No other pairs of
simplices in K~ +1(u x 1) have d + 1 common vertices. It follows that the
complex Xd+ 1 associated to u x 1 by (2) is a linear d-chain.

The O-skeleton and the (d + I)-skeleton of the chain Zd +1 have 2(d + 1)
and (d + 1) elements, respectively. In fact, the O-skeleton contains only V.,
v,, ..., vd andv~, v~, . . ..v~. The size of (d + I)-skeleton is directly obtained
from (2).
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Table 111.Pseudocode for the Extrusion Function

algorithm Extrusion(input: Y (PI ); output: z 1Pz ));
{skeletons construction)
K“(P2) := K“(P,) x (o, 1);
K~’ 1(P2)= LJ,,,, ~~,F,,,Kd+‘(uD X 1);

foreach q, = Kd(P1) do
{adjacencies in ternal to the chain}
foreachi~[p(d+ l),. ..)p(d+ l)+d– l]do

.V’C)(T,) ,= T, ~;

foreach i=[p(d+ l)+l,. ... p(d+l)+d]do
.wd+ ,(7, ) ,= T, ,;

{top and bottom face of the chain}
&d+,(Tp(d+,}):=. ti[](T,d+, ,.d):=L;

(adjawncies between ~ifferent chains]
foreach (UP,rr~) s Kd(P1) x Kd(P1) where .ti~((rP)= u , ,ti~((r~) = WPdo

+7,,) ,= 7,,, (il,jl) 6 ffp, h), (rl, ) ● ffq, k), 1 s 1 s ~
.w;/(T,; ) :== T,. , (i,, j,)= f(q, k), (r,, )~f(p,h),l<l<d

(adjacencies t’or boundary faces)
foreach ,TPE K(’( P~ ) where .v’~(VP) = ~ do

,W; (T, I) ,== L , (i,, j,)= f(p, h), l S1 <d

Extrusion of a polyhedron. The winged representation of Pz = El( PI ) can
be computed as discussed in [24]: first, each simplex o E K~( P, ) is indepen-
dently extruded, and this directly generates the skeleton Kd’ ‘( Pz ); then,
adjacencies between simplices in K“’ 1(Pz ) are computed by using closed
formulae. The algorithm is such that no “a posterior” triangulation of the
extruded object is required.

Pseudocode for the single-step straight extrusion El is given in Table III.
Let P] ● Y(l” be given, with K’i(P1) = {crO,. . . . u, ,1. Suppose Pj = EJP, ),
K’~+ ‘(Pl) = {7~),...> ~,{,1. ~, , ), and the set of simplices generated by extrud-
ing (~, = K~( PI )—a simplicial chain—be denoted by K~ +1([rP X 1 ) =

(~,,(& ,,! ...) ~P,{f.,,, ,,). Finally, w“( u, ) denotes the d-simplex (d – I )-adjacent
to t<, along its k th face. The computation of the adjacency-generating func-
tion f(., ), defined in [24], is O(d), and is repeated O(ds) times; therefore
the algorithm is 0( dzs), where s = lKd( P, )1.Since this is the size of the
output, the algorithm is also @( d2s ).

More general extrusion operators. The straight extrusion, with number of
steps h, is defined as a mapping E~ : .@n ~.~({ +1” +1 such that

E,, (P)=Px I

where I is the unit interval [0, 1] c !li and where the set of vertices of EA(P )
is

(KO(P) x O,; ,:,... ,
h–l

K[’(E~( P)) =
}

—,1 .
h

Two more general operators can be easily defined starting from the straight
extrusion. The linear extrusion LEU,~(P ), with extrusion vector v e !Iin ‘ 1,
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@
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Fig. 7. (a) the square P in Vi2 to be extruded; (b) straight extrusion E6( P ); (c) linear extrusion

~~[3 /2,3/2,3/2], 6( p); (d) screw extrusion A% /2, I, 2, 6( p). Hidden faces have been removed.

where v.+ ~ # O, and number of steps h, of the polyhedron P = @d’ n, is
defined as a scaling and shearing of the extruded object:

LE”, h(P) =s[l,,,,,l, ”n,lOHn+ l,[”,,,,,, vn,oEh(P).

Notice that H“, , does not affect the coordinate x.. ~.
The screw extrusion SE~,,,,, ~(P), with rotation angle t?, rotation plane x,,

Xj, and number of steps h, of the polyhedron P = 9d’ n, is defined as

SEfl, i,J,~(P) =Zi,j OS[l,,,,,l,,l QEA(P)

where Zi, j(Q) is a homomorphic mapping which applies a parametric rota-
tion to the vertices of Q, while the convex coordinates of other points in Q
within the simplex they belong to do not change. In particular, if q =
(qI,... ,q~+l) ● KO(Q), then Z,, Jq = R.,,~,~n.,q. The technique for computing
El(P) is easily extended to compute the winged representation of E~(P), so
that representations of the linear or screw extrusion of a d-polyhedron
P = @d’ n are both computed in O(hdzs), where s = lKd(P)l.

Language operators. The operator Extrude, with parameters u E M n+ I
and h, results in a linear extrusion LEV, h : 9d’ n + 9d +1‘n+1. The parame-
ters for the operator Screw are 9, i,j, h. The operator corresponds to a screw
extrusion SE@,i,j, ~ : ~d’n +.YZd+ln+l.

Example 3. The polyhedra shown in Figures 7b, 7c, and 7d have been
obtained, respectively, as

Extrude([O, O, 1], 6)P
Extrude([3/2, 3/2, 3/2], 6)P
Screw(rr/2, 1,2, 6)P

where P is the 2-polyhedron in $12 shown in Figure 7a.

The default operator for both Extrude and Screw is Embed. The operator
Embed, with parameter m, when applied to P = @d’ n yields

m times

Px -{o) x .“. x {o)- G&@ ’”+m.
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Fig. 8. Grid generation by extrusion.

For example, if P is a 3D cube in !li’, then Embed(2)P yields P x {O) x {O),
and the result is a 3D cube in !H’, lying in the subspace X4, X5 = O.

4.5 Grid

A grid can be generated by a succession of straight extrusions (see Figure 8).
Such an operation can be generalized in order to build a grid over a simplicial
complex. This can be useful, e.g., to build a time grid for a dynamic phe-
nomenon over a manifold for which a simplicial approximation (or triangula-
tion) already exists. The grid generator operator, with steps h ~, . . . . h~, is

therefore defined as a mapping G~,, ,~,. : }W’ n 4 .?d +m~n ‘ m such that

G;, , ,~,,l(P) =Ef,,,, o .. OEhi OE~,(P)

where El, , is the straight extrusion previously defined.

Example 4. Let C ‘“ be the m-dimensional unit cube, and let o = .2°! 0 be
the O-polyhedron consisting of a single point. It is easy to see that the grid
G~l I(o), denoted as Gm, coincides with Cm, whereas G;,, , ,,r,fo), denoted
as G~,, ,,,,,,, differs from Cm only because its set of vertices is a superset of
KO(C’”), e.g., KO(G~,q,A ) > KO(Ca), since it contains vertices which lie on the

edges, faces, and also in the interior of the unit cube. Notice that

IK”(G:, h (o))l=(h, +l)(h, +l)-(h~+ l).1 . ,,,

The operator Grid, with parameters h,,. . . . h.,, results in the generation of
the grid G~,, ,~ . The default operator for Grid(hl,., ., h~ ) is EmbecX m).

In addition, n~te that the structure Grid( h,, h ~, . . . . h ~ ) o corresponds to a
uniform partition of the m-dimensional unit cube. Uniform partitions of
different size and position are obtained by application of an afflne transfor-
mation. Nonuniform grids can be generated by using the “product” operator
described in [46].

4.6 Maps

Manifold is, intuitively, the extension of the concept of curve and surface
obtained when m independent parameters vary. A differentiable manifold M
is a topological space such that: (a) it can be covered by a family of open sets
homomorphic to the interior of the Euclidean hypersphere; (b) when a point
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fu

M

Fig. 9. The concept of simplicial map.

belongs to two such open sets, there exists a bijective smooth mapping
between the two corresponding systems of coordinates. Each pair (U, f ),
where f: U * Mm and U G M, is called a chart of the manifold. The set of
charts is called atlas.

Most part of engineering computations consists in solving field equations
over some differentiable manifold, using some suitable discretization of charts.
In this subsection we show that when a chart (U, f) is given, it is very easy to
generate a simplicial approximation of U starting from a simplicial decompo-
sition or approximation of f7J.

Let a pair (U, f) be given; if fU = [1], where Z is a simplicial complex,
then we call simplicial approximation of U the set [ @, Z],where @ = F 1 is
applied only to the vertices of E, while other points maintain their convex
coordinates w.r.t. the simplex to which they belong. This set is easily com-
puted from Z by substituting the set of vertices KO(Z) with its image fl”(~).
We call simplicial map a pair (Z, ~) (see Figure 9). Notice that a solid model
for the approximation of U is known when the topology of Z is known. This is
the case when a winged representation of Z is given. Z is called grid when
fU is a rectangular domain, i.e., a product of intervals 1, c M and KO(Z) =
v, x ““. x V“, where each V, c Ii is a discrete subset of coordinates.

In order to specify a simplicial map we need to define both a domain
discretization (often a grid) and a coordinate transformation f: U - !}i’,
with U c 31n. For this purpose it is necessary to have an algebraic subsystem
for the symbolic manipulation of vector-valued real functions x~ =
@~(ul, u2,. ... u~ ) of real variables u i( 1 < h s n). Such a subsystem is being
developed within Simplef. It allows for: the input of function expressions in
standard mathematical format; the automatic generation of partial deriva-
tives; some matrix calculus, with both symbolic and numeric matrix ele-
ments; the interfacing with external computer algebra systems (like
Mathematical).

The operator Map takes as parameters the functions @ = @l,. . . . on which
define the simplicial map. As a convention, letters UI,. . . . u~ are used to
name coordinates in the function domain fU c X‘. The syntax for the
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specification of a map from .Wf ‘“ to .@d’”, d s m s n, is therefore the
following:

Map(@l( ~1, . . .. Um).4n(Ul, (Ul, . . .. u”.))

using standard mathematical format for the functions specification. The
default operator for Map is Embed(n-m). Some examples of the use of the Map
operator are given in Appendix B.

4,7 NURBS

Non-Uniform Rational B-spline (NURBS) curves and surfaces have assumed
in recent years a central role in CAD systems and in standard graphics. In
fact, they give both a representation with local support of free-form geome-
tries and an exact representation of conic sections and quadrics. In addition,
they exhibit nice geometrical properties, as the global and local containment
in the convex hulls of control points, local continuity control, etc.

An easy generalization of NURBS curves and surfaces is the (m, n )-NURBS,
a mapping from .$’” to !)]n defined by n rational functions depending on m
variables. Each of the n rational functions is the parametric representation of
one of the n coordinates of a point in the NURBS range set. The (m, n)-
NURBS mapping is specified by the usual set of parameters (orders,
knot vectors, and control grid), whose meaning is recalled in the following
paragraph.

The syntax for the NURBS mapping is NURBS( L, K, C ) where L is a list of
m integers, specifying the orders k, (order = degree + 1) of the m B-spline
basis of polynomials. K is the list of m knot vectors (nondecreasing se-
quences of 1, reals, 1 s i s m). C is an m-dimensional array of points in
.’$ ‘1‘ 1 used as shape approximation, where the ( n + 1)-th coordinate is the
weight of the control point, which acts as an “attractor” in the shape
approximation. The B-spline basis corresponding to the independent variable
u, contains [, – k, polynomials, so that the size of the array C of control
points is (11 – klXlz – kz).”.(l~ – k”,). For more details about NURBS
curves and surfaces and their (m, n )-generalization, the interested reader is
referred to [56] and [49].

A solid model of a polyhedral approximation of a NURBS range set is
simply obtained by evaluating the expression

NURBS(L, K, C) Grid(hl, hz, . . ..hnl)o

whose meaning is the following: Grid(h,, hz, . . . . h~ ) o is an m-dimensional
grid in m-dimensional parameter space, with h, steps in the direction of the
i th parameter. The vertices of the grid are substituted as parametric values
in the n NURBS scalar functions, in order to exactly generate a point in
n-dimensional range space, while other grid points are afflnely mapped in N n
according to their convex coordinates Aj (O s j s d). More formally, if u is a
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Fig, 10. Two polyhedra, Ml, M2, approximating a planar NURBS.

Fig. 11. The results of the expressions BoundaryGrid(3) Ml and Grid(3) Boundary Ml, where
Ml is the polyhedron on the left in Figure 10.

d-simplex:

ifp~u C91m, andp= ~ Ajvj,
v,~KO(u)

then NURBS( )p = ~ Aj NURBSOVJ. (3)
u,= KO([~)

It is assumed that in the NURBS mapping the topology is conserved. In other
words, the polyhedron NURBS() Grido o has the same topology as Grido o.
Notice, that in order to ensure in any case the validity [54] of the resulting
polyhedron, a check for possible self-intersections should be performed, with
a cost of 0(s2), where s = m!hl ““” h~ is the number of simplices in Grido o.

Example 5. Two 2-polyhedra (see Figure 10) are generated by using a
(2, 2)-NURBS mapping. They differ only for a refinement of the argument
grid. The polyhedron on the left is generated as Ml = NURBS( L, C, K)
Grid(14, 5) o, while the one on the right is generated as Afz = NURBS( L, C, K)
Grid(28, 10) o. The polyhedra in Figure 11 are obtained by combining the Grid
and Boundary operators: On the left, the result of the expression Boundary
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Grid(3) Ml, where Ml is the 2-polyhedron previously defined; on the right,
the result of the expression Grid(3) Boundary A41.

At this point, we would like to stress that in our setting we see an
(m, n)-NURBS as a mapping from ~d’ m to :>d’, (d s m s n). As a conse-
quence, the operator NURBS is used not only to generate but also to
transform polyhedra, and therefore the application of NURBS to a structure
makes perfect sense. Notice that the polyhedral argument of a NURBS
application must be considered as embedded in parametric space. This set-
ting is mainly useful in three cases: (a) to map a “nonsolid” subset (d < m ) of
the NURBS domain, e.g., a NURBS curve defined on a NURBS surface; (b) to
evaluate a trimmed NURBS, e.g., a trimmed surface in !Jt3, given a pol yhe-
dral approximation of its 2D parametric domain set; (c) to build a multigrid
approximation, where grids of different resolution are defined on (even
overlapping) subsets of the map domain.

4.8 Project

The projection 11, of the polyhedron P C=,@(f n is defined as the set:

II, (P)= {( PI,.. .>P, ,> P,+ l,...! Pn),P~p)c!J~n ‘

Notice that D,(P) is a polyhedron, but in the general case a simplicial
decomposition of ~,(P) is not easily obtained from a simplicial decomposition
of P. However, the projection of a single d-simplex u c !H n has particular
properties. Since a is a d-simplex, there is at least one (d – I)-face of u, say
~, which projects in a (d – I )-simplex Hi(T) in !1/” 1. Consider, with respect
to [1,(T), the projection of the only vertex u of u which is not a vertex of T.
Two cases are possible, namely either ~i(u) = ~,(T) or [1,(u) G 11,(T). In the
first case, the projection of u onto !Iin-1 coincides with the (d – 1)-simplex
[l,(T). Otherwise, the projection of o onto .]i$ ‘- 1 is the convex set 11,(7)[1, (u)
resulting from the join of the (d – 1)-simplex ~,(~) and of the point II,(v).
This is a convex set with (d + 1) vertices in !Iin 1, which can always be
decomposed in at most [(n + 1 )/2] simplices.

When projecting a complex, the problem is complicated by the overlap of
the projected simplices. Nevertheless, as in the case of a single simplex, the
study of topological properties of the projections of subsets of boundary faces
may be useful to devise an efficient solution to the problem.

The operator Project, with parameters i ~,. . . . i.1, results in the application
of 11,,~ . Oil, m. Use of the optional indices specifier is not allowed in this
case. Presently this operator is not supported within Simple; in the general
case.

5. SET OPERATIONS

The evaluation of a set-operator is accomplished differently than the evalua-
tion of a generic-operator (see Section 4). As the calculation of the result of a
single Boolean operation can be very time consuming, it is convenient to
attempt a simplification step over a whole Boolean expression, thereby
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avoiding the computation of unnecessary subexpressions. In the evaluation
phase, when a set-operator occurs to be applied to a set of substructures, we
postpone its evaluation until all the generic-operators contained in these
substructures J-iave been evaluated. Hence, if a generic-operator has as
argument a substructure containing set-operators, then the whole process
has to be first applied to this substructure. In this way we obtain an
expression formed by set-operators and polyhedra only. Then we evaluate the
whole Boolean expression, using tests to prune unnecessary parts.

Let S be a structure. Then, the rules for the first phase of the evaluation of
a set-operator over S can be formally stated as follows:

—S is a polyhedron or a list of polyhedra: S is returned unchanged.

—S is a list of substructures, and at least one of them is not a polyhedron:
the evaluation results in a new structure, obtained by evaluating all the
generic-operators contained in the substructures.

—S is a structure beginning with a generic-operator: evaluate the innermost
operator, and then apply set-operator to the result.

The operators Union, Intersection, and Difference correspond to the regularized
set operators U *, n*; and –* , defined as the closure of the interior of the
result of the theoretic set operation. It is assumed that all operands are in
pn, n.

Example 6. Evaluation of the expression

Difference
(Union< A, Boundary{ B, C)),
D,
Intersect< E, F, G))

where A, . . . . G are polyhedra in !Iin, yields the Boolean expression

(Au* (dBu* W)) –*(D–*(En*(Fn* G))).

The Boundary generic-operator is first evaluated ( dl? and dC are the winged
representations of the boundaries of polyhedra B and C). The final expres-
sion contains polyhedra and set-operators only.

5.1 Evaluation of a Boolean Expression

A Boolean expression obtained with the transformations previously described
is computed executing the following steps:

Normalization. The expression is converted into a normal form, called
P-form, by means of symbolic manipulation techniques. The P-form is a
union of quasidisjointed P-constituents, each P-constituent being the inter-
section of positive and negative polyhedra in the expression. A negative
polyhedron represents a “hole” in the space, that is, the difference between
the universe (the affine embedding subspace) and its interior. However, since
negative polyhedra only appear in the intersection with positive polyhedra,
the complement operation never needs to be executed per se, but can always
be translated into a difference: an expression as ABC is always computed as
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( A n* B) –* C. Each P-constituent represents a portion of space that can be
not convex and not connected. During the normalization process, a pruning of
the expression is executed, using a bounding-box intersection test.

Selection. Each polyhedron in the P-form is expanded in its set of sim-
plices; the result is a new normal form, called s-form, that is a union of
quasidisjointed s-constituents, each s-constituent being the intersection of
positive and negative simplices. During the selection process, a pruning of the
expression is executed, using a simplex vs. convex-hull-of-polyhedra intersec-
tion test (see Section 5.3). Although the number of s-constituents is exponen-
tial in the worst case, it may be expected that pruning may strongly reduce
this number in practical cases (see [66]).

intersection. The positive simplices in each s-constituent are intersected,
and the vertices of the resulting convex are computed.

Triangulation. The resulting convex sets are triangulated and their ‘M
representations are computed.

Repeated-difference. One of the negative simplices of the s-constituent is
subtracted from the triangulated convex, by using the TriangulateJoin algo-
rithm described in the following section. The process is iterated for each
negative simplex. At the end, we have a triangulation of the s-constituent.
Adjacencies between s-forms have to be taken into account in order to obtain
a valid triangulation of the whole polyhedron resulting from the Boolean
expression.

Simplification. At this point a further reduction step of the decomposition
(not yet implemented in our system) could be executed to reduce the fragmen-
tation of the resulting representation. This (challenging!) phase of the compu-
tation of a Boolean expression is not discussed in the following.

E.rample 7. In Figure 12 an example of the evaluation process is shown.
The expression to be evaluated is A ~ B. The Normalization step yields the
P-form ( ~–, AB, ~). The result of the selection step is the s-form
(al~l~z, az~l~z, aibl, al bz, azbl, azb2, bltilti2, bztiliij). At the end of the
Triangulation and Repeated-difference steps the v representation of the
resulting polyhedron is obtained.

Details of the technique can be found in [23]. Alternative approaches to
Boolean operations in dimension n, discussed in the Introduction, can be
found in [9], [52], [57], and [58]. In the following we briefly discuss the
guidelines of the method we adopted to compute an s-constituent.

5.2 Computation of an s-constituent

As we stated above, a Boolean expression can be transformed in an s-form,
i.e., the union of s-constituents. The transformation rules used in the Normal-
ization and Selection processes guarantee that the s-constituents are qua-
sidisjointed (their regularized intersection is empty). Therefore, it is possible
to compute each s-constituent separately, and then glue them together. The
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Fig. 12. Evaluation of the Boolean expression A U * 1?. (a) The polyhedra A e B, with the—
underlying triangulation; (b) Normalization: M, = W, M7 = AB, M~ = ~; (c) Selection: ml 1 =

a1Tl~2, etc.; (d) The nonsimplified triangulation of the re&lt. -

Fig. 13. An example (in 2D) of the s-constituent al b1FlF2~l

only interaction constraint is between adjacent cells, as the triangulation
induced on the common boundary regions must be the same.

An s-constituent is a portion of space (eventually not convex and not
connected) given by the intersection of positive and negative (complemented)
simplices, belonging to different polyhedra. An example of s-constituent (see
Figure 13) is:

—
al bl~l~zdl,

where al, b ~,El, Z2, and al are simplices belonging to ~he polyhedra A, 1?, C,
and D, respectively, and where simplices cl, 13z,and dl are complemented.

Given two simplices ml and Wz, belonging to the same simplicial complex,
it is, by definition, UI n* Uz = 0 and al n* ti2 = al. These simple rules

(together with geometric tests) are used in the selection phase to prune and
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simplify s-constituents. An s-constituent can be calculated, i.e., a winged
representation can be found for it, with the following rule:

corresponding to the Intersection, Triangulation, and Repeated-difference
steps listed before.

Simplices are convex sets; therefore the intersection of a set of (positive)
simplices is a convex set and can be seen as the feasible solution set of a
linear-programming problem written using convex coordinates as decision
variables, where convex expressions of common points are constrained to be
equal (see Section 5.3). Hence, the empty-intersection test can be performed
by simply putting the LP tableau in canonical form. If the intersection is
nonempty, all its vertices can be extracted with a suitable algorithm [ 18, 19,
38]. The interested reader is referred to the survey discussion of methods to
compute all vertices of a convex polyhedral set by Matheiss and Rubin [37].
We are currently using a revised version of the algorithm described in [18].
Once the vertices of the intersection set have been computed, this convex set
can be triangulated with the method described by Von Hohenbalken [63]. The
algorithm has been modified [23] in order to allow the triangulation of a
convex when adjacent convexes have already been triangulated. This is done
by using the triangulation induced on the boundary of the convex as a start to
triangulate the interior and by inserting an internal vertex when a situation
occurs which is unsolvable by using only original vertices.

In the Repeated-difference phase negative simplices are subtracted one at a
time. The pseudocode for the function that computes a single difference is
given in Table IV. I is the input complex; 7 is the simplex to be subtracted; ~
is the output complex; o is a simplex of E; and Vj is the jth vertex of a. Xl,
X2 are simplicial complexes. At each step of the execution the geometric
carriers [El ], [Z2 ] are convexes. The meaning of the statement

is “add to ~ those simplices of Xl that do not belong to Lz, appropriately
updating adjacencies. ”

—TriangulateIntersection is a function that returns, given two input sim-
plices, a simplicial complex triangulating their intersection. As anticipated
before, care must be taken in order to triangulate the convex coherently
with adjacent simplices.

—External returns True if the vertex is external to the simplex, False
otherwise.

—TriangulateJoin is a function having as input the winged representation
Y ( Xl ) of a convex set and a vertex u external to the set. The output is a
winged representation of their join set UIXI]. To compute such a decompo-
sition it is sufficient to evaluate the boundary of the input d-complex and,
for each (d – 1)-face in the boundary, to join it with v if u is contained in
the external affhe subspace of the face, yielding a d-simplex of the output
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Table IV. Pseudocode for the Difference Function

algorithm Difference (input: ‘71X), 7; output: ‘Zl~));

ME) ‘= (0, 0);
foreach a e K%E) do
%’(~z) := TriangulateIntersection( a, T );
%lX1) := W-(X2);
foreach Uj= KO(u ) do

if External(u, T) then
WIEl ) := ‘lkiangulateJoin(%’lZ1 ), Uj);

‘Yl~) := Glue(Y{~), DrillW(E1), W7Zz)))

Fig. 14. A graphical description of the iterative use of the TriangulateJoin function.

decomposition. Notice that (i) the join of a vertex with a convex set is again
a convex set and that (ii) the output of the function is a simplicial
decomposition of a convex set, so that the function can be used iteratively
(see Figure 14).

—Drill is a function which returns the winged representation of the differ-
ence between (winged representations of) two consistent simplicial com-
plexes ZI and Zz. By consistent we mean that their intersection is triangu-
lated in the same way. The computation is performed: (a) by localizing
faces of xl which coincide with faces on the boundary of Lz and setting
their adjacencies to L ; (b) by discarding simplices in Kd(Zl ) n Kd(Z2 ).

—Glue is a function which returns the winged representation of the union
between (winged representations of) two quasidisjointed complexes El and
Zz, where the common boundary is consistently triangulated. The compu-
tation is performed by localizing boundary faces of El which coincide with
boundary faces of X2 and sewing their adjacencies. A similar operation is
used in the boundary evaluation (see Section 4.3).

The approach to the computation of the intersection of two polyhedra when
using decompositive representations can be parallelized more easily than
when using boundary representations. The simplest strategy is to put the
polyhedron of minimum size (number of simplices) on one processor and to
uniformly distribute the other polyhedron on the remaining processors. The
intersection problem is reduced in this way to a set of pairvvise disjointed-
intersection problems of smaller size. The quadratic approach can be strongly
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improved by maintaining a recursive partition of the embedding space, e.g.,
by generalizing to !Iin the tree-shaped partition techniques known in !li 2 and
!)i’) as quadtree and octree, or by using their dimension-independent variant,
the bintree [61]. An alternative is to introduce space-cutting trees, originally
proposed by Fuchs [26] for hidden-surfaces removal. This approach has been
considered by VanWek [62] for Boolean operation acceleration and
entity/boundary classification problems.

5.3 Intersection of Convex Sets

A bold notation for points is used in this section and in Section 6.1 in order to
ease the understanding of vector and matrix expressions.

Given a finite set of points U = {ul,. . . . Un,) c !Jin, any point p belonging
to con[ U, the convex hull of U, can be expressed as:

P = EAju,,
J

St. ~A, = 1

The scalars A,,, called convex coordinates of p with respect to U, are unique
when the points u,, are atllnely independent, i.e., when they are the vertices
of a simplex of order d = m – 1 < n. When U coincides with the O-skeleton of
a polyhedron P the point p spans the convex hull of P. Notice the P needs to
be neither convex nor connected.

Let V=[U1 Uz . . u,,, ] be an n x m array, where the columns are the
points of U. Convex coordinates are denoted by the column vector h =
[A, A, . . . A,,,]~. Using matrix notation we can write;

p=vk
St. lTA = 1 (4)

A,>O’ l<j cm.

Consider two sets of points U, and UZ. The intersection of conu U1 and
con L’ Uz is a convex set. We have p E conu UI n conu U~ if and only if both
p= VIA1 andp=Vzkz hold, with the usual constraints on convex coordi-
nates, i.e., iff the following system admits solution:

Hence the set con L) Ul n conu Uz can be characterized as the solution set of
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the simultaneous equalities and disequalities

(5)

where k = [ A; A: ]T. This yields a set of n + 2 equations in the ml + rn2

unknowns A. The equations (5) have the standard form of the constraint set
of a linear-programming problem [40], and any linear programming solution
technique can efficiently provide an answer for the emptyness test.

The formulation above can be used in executing a convex-polyhedron vs.
convex-hull, or a convex-hull vs. convex-hull intersection test, as we need in
the normalization and selection phases previously described. This is useful
for pruning during the evaluation of the tree representing a Boolean expres-
sion. When using the above technique, the sets of points U1 = KO(P1 ) and
Uz = K“( Pz ) implicitly represent the convex hulls of general nonconvex
polyhedra PI and Pz. Notice that there is no need for explicit computation of
convex hulls as minimal sets of points: linear-programming techniques by
themselves recognize and discard redundant variables.

A particular case arises when the sets conu UI and conv Uz are simplices.
If their dimensions are dl and dz, respectively, the set of linear constraints
which describes their intersection has n + 2 equations in dl + dz + 2 un-
knowns. Hence, the set-up in (5) is also used for computing the intersection
set of two simplices, as required in the intersection phase of Section 5.1,
allowing for a further conceptual economy.

6. OTHER OPERATORS

The operators described in the previous sections have a common property:
they can all be regarded as functions between two spaces of polyhedra. Some
other operations are frequently needed in geometric modeling which are not
of this kind. An example is the classification of a point with respect to a
polyhedron, which is a mapping ~ “ n x !l n -+ {True, False}. This problem
and the integration of polynomials over polyhedra are discussed in the
following.

6.1 Point-Polyhedron Classification

The problem of point containment in a convex set—as a particular case, in a
simplex—is easily cast into a linear-programming formulation. The query
point p is contained in the convex hull of a finite set of points U c !)1” iff the
feasible solution set associated to the linear constraint set (4) is nonempty.

The containment test is reduced to the emptyness test for a convex set in
the space of the variables h, which can be done by using any standard
linear-programming method, e.g., the artificial-variables technique [40]. This
is equivalent to the solution of a particular LP problem, say to one run of the
simplex method. Testing point inclusion against a convex polyhedron P =
@d’ n with this method requires just one such test over an LP problem of size
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0( IKO( P )1), which is likely to range from moderate to high. For a general
nonconvex polyhedron the same technique is applied to each simplex of
YIP ). This requires IKd( P)l emptyness tests, which implies the solution of
IK~( P)] linear-programming problems of size O(d + 1). This approach seems
to be more efficient in practical cases than comparing the point to the
hyperplanes supporting the faces of each simplex.

With a different approach, we can devise a specialized data stmcture to
answer inclusion queries. For the convex case, one such spatial index has
been proposed by Ferrucci and VaniiEek [25] which allows point classification
in O(log(~ nd) time.

6.2 Integration

A solid representation must support algorithms for numeric and/or symbolic
integration. A representation based on a simplicial decomposition of the
integration domain P = .Y~ n makes the integration easier, due to the do-
main additivity property of integrals:

~f(P)dV= z ~f(p)dV.
[’ ,r=~,f (T

Numerical integration over simplices in n-space has been discussed by
Hammer and Stroud [30], who obtained exact formulae for the quadratic and
cubic polynomials over n-simplices in the n-space. In the related paper [31]
Hammer et al. gave quadrature formulae for the k th-degree polynomial over
the n-simplex. Each formulae, by using the F,; representation of 3-polyhedra,
are given by Cattani and Paoluzzi [17]. Two exact algorithms and their
implementation for the integration of multivariate monomials over a multidi-
mensional polyhedron P E .~’i n have recently been described by Bernardino
[7]:

(1)

(2)

When using a decompositive representation of the integration domain P,

for each simplex u = K~( P ) perform a coordinate transformation, afflnely
mapping cr into the standard simplex ((O, . . . . O), (1, O, . . . . O), . . . . (O, . ...0,
1)), evaluate the integral over the standard simplex, and accumulate the
result multiplied by the Jacobian of the transformation, given by the
determinant of the matrix of the afflne mapping.

When using a boundary representation, compute the integral by repeated—
integration, as a summation (for each simplex 7 = K~ 1(JP )) of integrals
over the cylinders having 7 and its projection II(r) into the plane x,, = O
as bases. Such integrals can be evaluated by recursively computing
integrals over the (lower-dimensional) bases of the cylinders, until the
intrinsic dimension of the integration domain is one.

The first algorithm requires only the knowledge of the d-skeleton of the
integration domain P, while the eff~ciency of the second is strongly improved
when a winged representation 7/(;(P) is given. In fact, for each recursion step
s ( 1 s s < d) it is necessary to (efficiently) evaluate the boundary of the
integration domain and to (e f%ciently) extract its boundary hyperfaces, i.e.,
the connected subsets of the boundary which belong to the same hyperplanes.
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7. CONCLUSIONS
A simple and general representation and a set of tools to work with simplicial
decomposition of dimension-independent polyhedra have been described. Both
linear polyhedra and simplicial approximations of curved polyhedra can be
generated and combined in any dimension with extrusion, simplicial maps,
set operations, and so on. Such objects can be collected into structures, which
allow us to combine both other structures and primitive objects with affine
transformations and higher-level operators. The described approach allows
for a unified view and treatment of several geometric problems.

A prototype multidimensional modeler called Simple;, which supports
both decompositive, boundary, and symbolic representations, is under devel-
opment [6, 22, 49]. Presently, Simple; allows for: the traversal, with reduc-
tion to world coordinates, of structures defined by using local modeling
coordinates; the generation of higher-dimensional polyhedra, via linear or
screw extrusion; the evaluation of Boolean expressions and/or their reduc-
tion to a normal form; the integration of polynomials over polyhedral do-
mains; the definition of simplicial maps and NURBS, which allow us to
generate polyhedral approximations of curved manifolds and fields over
manifolds.

Whereas simplicial representations seem to be eflicient in low dimension
(e.g., such representations use an optimum storage when linearly approxi-

mating the boundary of 3D curved solids [45]), when dealing with extruded
objects the number of simplices grows unfortunately with 0( m !),where m is
the number of dimensions added by extrusion operations. Another critical
point is the high fragmentation of the simplicial representation deriving from
set operations. This would require the introduction of a reduction step,
currently not supported, after the evaluation of Boolean expressions. Much
more can also be done to speed up set operations, e.g., by associating spatial
indices [25] to the simplicial complexes to be combined.

The aim of the paper was to show a point of view on representational
issues, as we believe that representations based on simplicial complexes may
produce the convergence of methods of solid and (curved) geometric modeling
and may actually help to reduce the gap between solid modelers and CAE
systems, which make large use of cell decompositions of solids. In this
framework a major research effort is still needed, as many problems need to
find an efficient solution, including the computation of the projection opera-
tor, the simplification of fragmented complexes resulting from Boolean opera-
tions, and their acceleration. An alternative representation can be set up with
cell decompositions where cells are convex or afflne sets. With such a repre-
sentation most of the implemented algorithms (based on LP techniques) can
be used, with the advantage of no augmentation in the number of the
extruded cells and less fragmentation. Such an approach is under study.

The need for high computing power, the use of decompositive representa-
tions, and the central role of LP techniques can take advantage of parallel
computing architectures. In particular, we suggest a large-grain MIMD par-
allelism based on ultracomputers or hypercube machines to exploit both data
and task subdivision. The authors believe that multidimensional modeling
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implemented on such machines may constitute an advance for both applied
geometry and computer graphics.

APPENDIX A

d-Dimensional Cubes

A d-dimensional cube C’f can be recursively defined as the image of a
lower-dimensional cube Cd 1 under an extrusion operation. For the basic
case we have that C{) is a single point. Cl, C2, Cs, C4 are the unit line
segment, square, cube, and hypercube, respectively. Using the data definition
language described in this paper, the d-dimensional unit cube can be defined
as

Grid( 1,1 ,...,1)()

where the Grid operator has d unit arguments, and o G :Yo”. The expression

above is equivalent to G!, 1,. .,1(O) = El 0 ““” 0 El 0El(o)
In the following, both boundary and decompositive winged representations

for various order cubes are given, with the aim of presenting several con-
structively built winged representations. In step-wise generating the repre-
sentation of the (d + 1)-th order cube, we need to reindex the vertices
generated by extruding the dth-order cube. For the basic case KO(Co ) = {uO),
and in general KO(C’~ ) = (uO,. . . . Uz, ~}, since a d-cube has 2’] vertices.
Notice that lYO(E1(C”)) = iYO(Cd) x (O, 1), so that for every U, in K“(C’J) two
vertices v, x (0) and u, x {1) arise in KO(E1(C’])); they are denoted as v, and
u,’, respectively. Since El(C’{ ) = C’]+ 1, we use the reindexing:

{

ui=KO(El(C~)) o<isz’~–l
u, G Id(c” ‘ ‘ ) stands for (6)

V<*~f/GKo(E,(c~)) Zd <i SZ’i’] – 1

Therefore we have:

Ko(c’))= {Uo}

K’)(C”)= (uo,.. .,u2d ~]

K’)(E1( C’’)) ={ UO,. ... V2<I,;u; ,.. .,uj<, ~}

Ko(c’’+’) =( JJO,.... U2<),,v~r(,. ... u~l, ]}

Finally, remember that: (a) the decompositive representation of an open (i.e.,
with boundary) polyhedron is characterized by the presence of at least one ~
symbol in the adjacency tuples; (b) the boundary representation of an open
polyhedron is a decompositive representation of its closed (i.e., without
boundary) boundary.

Line segment. The unit line segment C] is obtained by extruding Co = o
= {[)()]. The decompositive representation is:

‘7”((!’) ={(T()= +( U,), U:) .w’(uo) =(1 , ~ )

A boundary representation is not given, since Y<; is not defined for a l-dimen-
sional polyhedron (see Section 2.3).
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Square. The unit square C 2 is obtained by extruding the unit line seg-
ment C 1, where v; has been reindexed as VI, according to rule (6). Therefore
we have, for the decompositive and boundary representations:

The corresponding boundary representation is

[

(ro,~ = –(UO, U:) d(cro,l) = (~lfo)~o, z)

ao,’2 = +( VO, V1 ) J% ’( UO,2)=(~l,l!~o,l)
Z(C2) =

a~,o= –(u; >q) Jqal, o) = (~l,l>~o,l)

Ul, l = +(lq, vf) ~(~1,1) = (~1, o>~o, z)

Cube. The 3D cube C3 is obtained by extruding the C2 square, where the
vertices v; and u; have been reindexed as U2 and US, respectively. The
3-simplices in C3 are obtained, according to Section 4.4, by separately extrud-
ing 2-simplices in C 2.

fcro= +(V o,v,, u~>u:) @(ao)=(a,, L>l ,1)

u~ *) .M(ul)=(az, l. ,Us,ao)= +( V1, U2,U;, V1

*) d(az)=(l, a~, l>al}02= +( U2,U:, U;, U2
~(c3) = ,

as= –(UI, U2,U3,U;) J#(u3)=(a4, L,a1,1)

~~= –(U2, U3,V;, V; ) -@(aA) = (a5, a2, ~ ,U3)

\a5= –(v3>vy> v;>@) J@(a~)=(l,L,l,aq)

Notice that the number of tuples in the %. representation is equal to the
number of L symbols in the corresponding W representation.

‘cro,l = –{ VO,U2,U:) ~(~o,l)

IY0,2 *) @(aO,, )= +( UO,V1, UO

ao,~ = –(UO>%, U2) ‘@(~o,3)

Ul, , = –{ul>?J; ,lJy) @(~l,, )

crz, o = +(v; ,vf, u; ) J#(crz,o)

*) @(a,, z)= +( V2, U;, V2
‘W.(C3) = { ‘2’2

U3,1 = +( U,,V3,U:) JS7(U3 ,1)

cT3,3 = +( U1, U2, U3) Jqa3,3)

U4,2 = ‘(vz, u3, v~) ‘(m4,2)

a~, o = –(u~, u;, u;) @(a5,0)

*) .!W’(a,,l)U5,1 = +( V3, V;, V3

U5,2 = -( U3, U?, U:) JY’(U,,2)
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Hypercube. According to rule (6) we have KO(Cs ) = {uo, . . . . UT).Further-
more, it is KS(C3) = {uO, . . ., uJ. We have the following decompositive winged
representation for C4 ~ EI(CS ).

m“ *)= +( U(),Ul, VZIu4~v0

fl, = –(U,, U2,U4,V;, U9)

(T2 *)= +( U2,1J4,U;, L)9>V2

(T3= –(u4, uj, u;, u;, uJ)

(T4= *)+( UI, U2)V4>IJ5,1+

(75 = -( V2, U4, U5,U;, IJ:}

(T6 *)= +( U4, U5, V;, V;9V4

(T7 = -( U5, U;, U;, U$, U;)

(r8= +( U2, V4, L15,V6, U;)

[Tg = –(U4, U5, V6, V;, U$)

c~l() *)= +( U5, U6, V;, V:, V5

0,, = –(V6, V;, V;, V;, V:)

(712 = –(vl, v2, v:], v~, vy)

(T,:< = +(v2, v:l, v5, v~, v; )
(r,4 = –(V3, V5,V;, U;, V;)
(~,~ = +{ V,5,1J:,V;, V;, v;)

(T,6 = -( V2>V:,,V5,V6, U;}

(T,7 *)= +( V:<,V5,V6,LI; ?I)3
{1,8 = –(V5, V6,V;, V:, V:}

(T,9 *)= +( V6, V~, U~, V<T,v6

w~o = ‘(v:3, v5, v6, v7, v~)

CJ2, *)= +( U5, V6, U7, V;?V5

(T22 = -(u,, v,, v;, v;>v:)

<72:3= *)+( V7, V;, U,; ,V; ,V7

It is well known that the 4D cube is bounded by eight 3D cubes (see, e.g., [5]).
Six boundary 3-faces of the 4-cube are obtained b~ extruding the six squared
2-faces of the 3-cube. The missing two boundary faces are given by the
polyhedra C ~ x {O) and C:] x { 1]. The hypercube representation only through
its 8 cubic faces is a representation of the same kind of that one, frequently
used in graphics, in which a polyhedron is represented as a set of polygonal
faces. Such a representation is not considered solid, because it is missing
explicit storage of topology. Conversely, the winged representation above is a
solid representation.
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Fig. 15. The discretized domain M of the
example in Appendix B. The picture was
attained by removing hidden faces from the
polyhedron BoundaryM.

APPENDIX B

Field Modeling and Rendering

In this Appendix an example is presented of the combined use of various
operators in order to model both a curved-manifold object and a time-varying
scalar field defined on it. The language, algorithms, and representation
introduced in the paper are used to obtain several snapshots of the field at
different locations and time instants (see Figure 16).

Consider the 3D polyhedron, embedded in !l 3, shown in Figure 15. It has
been attained with Simple: as a map over a 3D grid, by the expression

M = Map(41(ul, u2, us), 4z(ul, uz, u~), 4~(u~))
Scale(2n, 1,1) Grid(48, 6, 6)o

where

~l(”l, u2, u3) = ((1 – uz)rI + (1 – uz)u3(rI ‘r~) + U2~)COSUl

@2(”l, u2, u3) = ((1 – u2)rl + (1 – u2)u3(rl ‘r2) +u2~)sinul

43(U3) = ~u3,

rl, r2, R, H are constants, and o is the same as in Example 4. Suppose we
now want to model a scalar field v = V(x, y, z, t)where t is the time. We can
add information about values of v over the discretization of the model by
adding a time grid and then map v over the whole domain. This can be
accomplished with the following expression:

having chosen for the time a discretization of 12 steps in the interval [0, 1].
Notice that F = 94’5. Visualization of the field for fixed values of t and z, or
t and v (iso-valued surfaces), can be obtained by evaluating and displaying
the expressions

ZT = Map(ul, Uz, z + V(U1,U2,z, t))
Ma~41(ul, uz, z),42(ul, uz, z))

Scale(2~, 1) Grid(48, 6) o
VT= Project(4, 5)

Intersect F, V, T
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Fig, 16. T h e  f i e l d  IV = Acos(k[( x - x$ + (y - y,,)’ + (z - z,,)~]}cos  p, w h e r e  A, k, r, .rcl, .v,,,
z(, are constants. Pictures correspond to three different values of the time t and to three values of
t, the height of the solid in Figure 15.
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where z and t are constants, and V, T are 4-eimplices in M5, lying respec-
tively onto the v = const, and t = const hyperplanes, and big enough to
intersect the whole portion of F belonging to these hyperplanes. Six pictures
of ZT, for different values of z and t,are shown in Figure 16.

APPENDIX C

Free Configuration Space Computation

Background. Multidimensional solid techniques, and in particular extru-
sion, projection, and set operations in higher-dimensional spaces, can be used
to compute a polyhedral approximation of free configuration space for a
mobile system amidst obstacles [44]. In this approach, dynamical objects (in
all the possible configurations) are represented as etatic objects in higher-
dimensional spaces, by extensively using extrusions. A simplicial decomposi-
tion of free configuration space is then simply obtained by subtracting from a
polyhedral representation of configuration space the projection into it of the
intersection between the above “extended” representations of mobile system
and obstacles. This method is just loosely dependent on the dimension of the
embedding geometrical space and can therefore be applied to a problem
representation in space-time, allowing for motion planning in the presence of
moving obstacles.

Let the moving system R c !Jl’ be a set of rigid parts R,, and let E c 9i n
be a set of rigid obstacles, which can be either fixed or moving along known
trajectories. In practical cases we have n s 4, with n = 4 when R U E are
modeled in space-time. The parts of the moving system have a total number k
of degrees of freedom, which equates the minimal number of scalar parame-
ters necessary to uniquely determine their position and orientation. It is
aesumed that the degrees of freedom are restricted to be either translational
or rotational. The Configuration Space CS = ZI X “”” X lk c ~ k is the product
space of range intervals Z, of configuration parameters. Each point in CS
represents a distinct configuration of the moving system, but juet a compact
subset FP c CS, called free configuration space, contains feaeible configura-
tions, where the R elements neither intersect nor intersect the obstacles. The
Extended Configuration Space ie defined in [44] as ECS = X n X CS c 3?n+‘.

An ECS repreeentation of R u E encodes, within a higher-dimensional
polyhedron, the whole set of all the feasible and unfeasible configurations of
R U E. In particular, a polyhedron obtained by linearly extruding R, repre-
sents all the possible positione of R, in its translational motion. The same
property holds for a screw extrusion of Ri, when dealing with a rotational
degree of freedom. The ECS representation of R u E can be used to compute,
with solid-modeling tools (intersection, difference, projection), the free config-
uration space FP, as shown in [44].

High-1evel operators. High-level operators for the representation of mobile
systems can easily be defined in terms of the extrusion operators. Consider
an object represented by the structure S, and suppose that S is free to
translate with translation given by TAt, with A G [0, 1]. The ECS representa-
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tion of this system can be expressed as Mov@ t )S, where the operator Move,
with parameter t=[tl, ..., t.] results in a linear extrusion

Jqt,.
.9d, r2 ~wd. l,n+l.

., f,,, l], l. Conversely, suppose that only some ele-

ments of the structure S are able to translate. In this case all the configura-

tions of S are represented by applying a linear extrusion LE[ t,, ,~,,,,,,~ to the
translating substructures and a straight extrusion El to the remaining

elements. Hence the default operator for Move is Extrude with parameters
([0, . ...0, 1], 1), i.e., a straight extrusion.

Recalling the definition of the operators with production rules, it is easy for
us to see that the ECS representation for such a structure can be expressed
by using Move with the optional indices specifier; e.g., if S = (S,, S,, S,, S, )
and if only SI and S:$ are free to translate, with translation vector t,then the
ECS representation of S is given by Movel ‘(t)S.

A rotational degree of freedom is modeled by using the Joint operator. The
Joint operator, with parameters c = (cl, . . . . c.), 0, i, j, h, results in the
mapping .~~ n ~ .@d +1’” +1 given by

T[c,.. ..cn, o] OSEti,,,l, hOT., c,, ,(’,,]

This corresponds to moving the point c (one of the fixed points of the
isometry) to the origin, then performing a screw extrusion, thereafter moving
c back. According to the previous discussion, the default operator for Joint is
Extrude ([0,... ,0,61, 1).

The ECS representation of a moving system which is able to rotate by an
angle 6 in the plane x,, xl with a fixed point c is approximated (with a
linear polyhedron, in h steps) as Joint(c, 0, i, j, h)S, where S is a structure
which represents the geometry of the system. When some portions of the
system do not move with such rotation, a screw extrusion and a linear
extrusion LEIO, ,,,., ~1,~ have to be applied to the rotating and nonrotating
substructures, respectively. This can be accomplished by using Joint with the
optional indices specifier.

Example. Consider the 2D simple robot, constituted by two schematic
rigid arms, shown in Figure 17. The robot is free to translate along the x axis
in the interval [0, 10], while the arm B is able to rotate around the point
p = (0, 5) with maximum angle n. An obstacle C is located in the workspace
of the robot. The ECS description of the whole system (robot and obstacle) can
be obtained by evaluating the expression

S = Move’z([IO, O,O])
Joint’((O, 5), r, 1, 2,20) (A, B, C)

where both A and B are the segment in !li 2 with vertices (O, O) and (O, 5) and
where C is the l-dimensional polyhedron in !Ji2 representing the obstacle.
Notice that B, in its initial position, coincides with A. The structure S
resulting from the evaluation of the expression is composed of three 3D
polyhedra in !N4. Each system configuration can be obtained by intersecting
Swiththe sets a=a, t= b, where O<a<rand O< b< 10.

ACM Transactions on Graphics, Vol. 12, No. 1, January 1993.



96 . A. Paoluzzi et al.

Fig, 17.

Y

ki-0Pa

A c

1--1

x

(a) (b)

(a) The robot and the obstacle used in the example of Appendix C; (b) The result of the
first extrusion.

IffiflA, ~Collmon ❑ ~, C mllm on

o 0,5 0.7 1 t

(a)

IY
‘o

(b)

Fig. 18. (a) The free configuration space for the robot and the obstacle of Figure 17a; (b) The
collision-free task planned in (a).

The first step in the evaluation of the expression above is the screw
extrusion of B. A and C are straight extruded. It is possible to see in Figure
17b that taking a section with a hyperplane a = cost and projecting the
section onto the x, y subspace, we obtain a “snapshot” of the system in a
configuration where the arm B is rotated by a degrees, while A and C are in
their original positions. The second step is the linear extrusion of both A and
B, representing the translational degree of freedom of the robot. A straight
extrusion is again applied to C. The whole expression results in three 3D
polyhedra embedded in 3] 4. Two projections in ti 3 of each polyhedron have
been depicted in Figure 19.

In order to compute the free configuration space for this robot, we first
have to compute the intersections between the ECS representations of the
arms:

E = Intersect S,, z.
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Fig. 19. The result of the second extrusion. Each object, a 3D polyhedron in !Ii4, is represented
by means of two projections in !Hs; (a), (b): extrusion of A; (c), (d): extrusion of B; (e), (f):
extrusion of C.

YLLX
Y (a) x Y (b)

Fig. 20. The results of intersections between the objects shown in Figure 19. Two projections in
!){’1 for each polyhedron are shown; (a), (b): intersection of A, B; (c), (d): intersection of B, C; (e),

(f’k intersection of A, C.

ACM Transactions on Graphics, Vol. 12, No. 1, January 1993.



98 . A, Paoluzzi et al.

The intersection between the whole robot and the obstacle is given by

F = Intersect (Union Sl, z, Ss).

Projections in Vi3 of these intersections are shown in Figure 20. Finally, the
free configuration space FP can be computed, according to the method
proposed in [44], as

FP = Difference
(Scale ([1, T]) Grid(l, 1) o,
Project(l, 2) Union(E, F))

where o is defined in Section 2.2. In Figure 18a the free configuration space
FP is shown, together with the collision-free path in FP for the robot task
shown in Figure 18b.

GLOSSARY

N n
PQ

(’””)

;: T

[Zdl
Ks(Zd)

P
9’, n

o

dP

K“(P)

Kd(P)

dP

KO(P)

K’(P)

aIYJ
x

Xis

1s1
& ’
J9J m p )

L
‘z7P)

Z(P)

A

Euclidean n-dimensional space

join of the two sets P, Q c W n

ordered set

simplices

simplicial d-complex

geometric carrier of the complex Z’

s-skeleton of a complex, i.e., the set of s-simplices in Xd

polyhedron

set of all linear d-polyhedra embedded in fit”

the only polyhedron contained in 9°’0, a point

boundary of P

set of vertices of P

set of simplices of a simplicial decomposition of P = P “n

boundary of P

set of vertices of P

set of d-simplices of a simplicial decomposition of P = 9’d’ n

jth face of the simplex u,, as defined by Formula(1)

Cartesian product

Cartesian product of i instances of the set S

cardinality of the set S

adjacency function

hth value in the adjacency tuple M UP), i.e., the d-simple adja-
cent to ~P along its h th face

“undefined” adjacency

decompositive winged representation of P

boundary winged representation of P

scalar
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P

T, S, H

R l.1.,~
Efi(P)

LEVI,(P)

SE (),,.,.,,(p)

G;; .. ,h,t(P)

f, 4
NURBS

II,(P)

u*, n*, –*

ccmu U
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vector
point

translation, scaling, and shearing

rotation of a in the x,, xl plane

straight extrusion of P with number of steps h

linear extrusion of P with extrusion vector v and number of
steps h

screw extrusion of P with rotation angle o, rotation plane x,,
x~, and number of steps h

grid over P

vector-valued functions

Non-Uniform Rational B-spline mapping

projection of P along the x, axis

regularized set operations

convex hull of the set U
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