
4

Elements of polyhedral geometry

This chapter reviews the algebraic and geometric concepts which underlie the
geometric kernel of the PLaSM language. The aim is both to collect concepts and
tools from different fields, and to provide the reader with key ideas useful in
understanding the behavior of basic operators of the language. For this purpose,
the chapter contains some materials about convexity theory, double representation
of polyhedral sets, polarity, the boundary structure of a polytope, simplicial and
polyhedral complexes, Nef polyhedra and linear programming. At the same time,
polyhedral geometry offers exciting opportunities to explore a programming language
properly designed to support geometric calculus. The straighforward generation of d-
dimensional permutahedra and the construction of Platonic solids inscribed in a unit
sphere provide convincing examples.

4.1 Basic concepts

Let us first recall some basic topological concepts like interior, boundary and closure,
and the basic elements, like halfplanes, halfspaces and flats, of the affine structure of
Euclidean spaces.

Topology A topology on a set W is a family T of subsets, called open sets, of W
such that:

1. any union of elements of T belongs to T ;
2. the intersection of any two elements of T belongs to T ;
3. ∅ and W belong to T .

The pair (W, T) is called a topological space. When no ambiguity arises about the
chosen topology, W itself is called a topological space. A metric topology on W is the
set of open balls centered at each W element, whose points have distance from the
center less than the radius. The natural topology, i.e. the metric topology induced by
the Euclidean distance, is assumed when considering IEn as a topological space.

Geometric Programming for Computer-Aided Design Alberto Paoluzzi
c© 2003 John Wiley & Sons, Ltd ISBN 0-471-89942-9

124 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Boundary, interior, closure Let W be a topological space and x ∈ W. A subset
S ⊂ W is a neighborhood of x if there exists an open set V in the topology of W such
that x ∈ V ⊂ S.

A point x ∈ W is a boundary point of S if neither S nor W\S is a neighborhood of
x. The boundary ∂S is the set of boundary points of S. A point x ∈ W is an interior
point of S if S is a neighborhood of x. The interior intS is the set of interior points
of S. The closure of S is the set closS := S ∪ ∂S. S is said to be closed (open) if and
only if S = closS (respectively, S = intS).

A set A ⊂ IEn is relatively closed (relatively open) if it is closed (open) with respect
to the subspace topology induced on affA by the natural topology of IEn. Analogously,
the relative interior relintA is the set of interior points of A with respect to the
subspace topology of affA.

The set A is bounded when there exists κ ∈ IR such that ||x − y|| < κ, for each
x, y ∈ A. Also, the set A is said to be compact if it is bounded and closed.

Segments A closed segment [x, y], with x, y ∈ IEn, is defined as:

[x, y] := {(1 − λ)x + λy|0 ≤ λ ≤ 1}.

An open segment, and a right (left) semi-closed segment, denoted as (x, y), [x, y)
and (x, y] respectively, correspond to 0 < λ < 1, to 0 ≤ λ < 1, and to 0 < λ ≤ 1.
Notice that open, closed and semi-closed segments are well defined even with coinciding
extremes. E.g.: (x, x) = [x, x] = {x}.

Set operations Minkowski addition of sets A, B ⊂ IEn and Minkowski product of
a set times a scalar λ ∈ IR are defined respectively as:

A + B := {a + b|a ∈ A, b ∈ B},
λA := {λa|a ∈ A}.

An algorithm for Minkowski addition of a polyhedral complex with a special class of
convex sets and its PLaSM implementation are provided in Section 14.6. This operation
is used for translational motion planning of a robot moving amidst obstacles [LPW79].
See Section 15.6.4 for a description.

Hyperplanes and half-spaces A hyperplane of IEn may be written as

Hu,α := {x ∈ IEn|uT x = α},

where u ∈ IEn\{o} is the normal vector of Hu,α and α ∈ IR.
A hyperplane may have several equivalent representations. In particular:

Hu,α = Hv,β

if and only if (v, β) = (λu, λα), with λ ∈ IR. It follows that Hu,α = Hu/|u|,α/|u|,
where α/|u| is the signed distance of Hu,α from the origin.

A hyperplane Hu,α is a translate of a parallel linear subspace Hu,0, i.e. is an affine
subspace:

Hu,α = Hu,0 +
α

|u|
u

|u|
= Hu,0 +

α

u · u
u.

ELEMENTS OF POLYHEDRAL GEOMETRY 125

The dimension of Hu,α is the cardinality of a minimal subset of IEn which spans Hu,0.
A hyperplane Hu,α subdivides the space En into two closed halfspaces

H−
u,α := {x ∈ IEn|uT x ≤ α},

H+
u,α := {x ∈ IEn|uT x ≥ α},

which will be occasionally named below and above halfspace, respectively.

Flats and half-flats An affine subspace is also called a flat. A flat may be always
represented as an intersection of hyperplanes. The intersection of an halfspace with a
flat not completely contained in it is called half-flat. A line is a flat of dimension 1. A
ray is a half-flat of dimension 1.

4.2 Convex sets

Convex sets are the main ingredient of our language for geometric design, since each
geometric value in PLaSM is a covering of a compact point set with convex cells of
appropriate dimension. It is hence very useful to reserve special attention to the theory
of convex sets.

4.2.1 Positive, affine and convex hulls

Here we recall some concepts quickly introduced in Chapter 3, in order to make the
present chapter more self-contained. In the remainder we do not distinguish between
a Euclidean space as a set of points and the underlying vector space. Anyway, the
terms vector and point are appropriately used when useful.

Positive hulls and cones A positive (or conical) combination of a set of vectors
{xi|i ∈ I} is a linear combination with scalars αi ≥ 0, i ∈ I.

A cone is a set C ⊆ IEn which is closed with respect to the positive combination of
every subset of elements.

Positive (or conical) hull of a set S ⊂ IEn is the set cone S of all positive
combinations of S elements. The set coneS is the smallest cone which contains S. Since
every positive hull contains the zero vector, it is customary to define cone ∅ = {0}.

Example 4.2.1 (Finite cone generated by a convex set)
In Script 4.2.1 the FiniteCone function generates the set conv A∪ {0}, where A is any
geometric value generated by PLaSM. The result of application to a translated cube
skeleton is shown in Figure 4.1. Clearly, the set (Cone:A) ∪ λ (Cone:A), λ > 1, is a
cone . We call the set Cone:A a finite cone. Notice that FiniteCone:A≡ λ A, λ ∈ [0, 1].

The FiniteCone generator function, depending on a formal parameter pol of
polyhedral complex type, is produced by the JOIN of its argument pol ∈ Pd,n with the
convex set {0}, where 0 ∈ IRn. Let us remember that the built-in geometric operator
RN returns the embedding dimension of the complex to which it is applied. Notice that
both the MATERIAL and the STRUCT primitives are used infix within their arguments.
To export the out object will require a preliminary loading of the ′colors′ library.

126 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Figure 4.1 Finite cone

Script 4.2.1 (Cone generator)
DEF FiniteCone (pol::IsPol) = pol JOIN (MK ∼ #:(RN:pol)):0;

DEF complex = (T:<1,2,3>:<1,2,3> ∼ @1 ∼ CUBOID):<1,1,1>;

DEF out = FiniteCone:complex
MATERIAL Transparentmaterial:<GREEN, 0.8>
STRUCT complex

Affine hulls and affine spaces An affine combination of a set of points {xi|i ∈ I}
is a linear combination with scalars αi such that

∑

i∈I αi = 1.
The affine hull of a set S ⊂ IEn is the set affS of all affine combinations of elements

of S. Every affine hull, called also affine space, is the translate of a linear space:

aff {x0, x1, . . . , xd} = x0 + lin{x1 − x0, . . . , xd − x0}

Let S ⊂ IEn, and x ∈ S. Then dimaffS = dim lin (S − x).
A non-empty subset U ⊂ IEn is an affine space if and only if there exist suitable

A ∈ IRm
n and b ∈ IRm such that

U = {x ∈ IEn|Ax = b}.

Convex hulls and convex sets A convex combination of a set of points {xi|i ∈ I}
is a linear combination which is both positive and affine, i.e. with scalars αi ≥ 0 such
that

∑

i∈I αi = 1.
The convex hull of a set S is the set conv S of all convex combinations of S elements.

The set conv S is the smallest convex set which contains S. A set K ⊂ IEn is convex
if it contains the segment connecting any pair of points in it, i.e. if for x, y ∈ K and
0 ≤ λ ≤ 1

(1 − λ)x + λy ∈ K.

In other words, a set is convex when it is closed with respect to convex combination
of elements. Also, a set K is convex if K = conv K.

A convex non-empty set A ⊂ IEn is said to be a convex cone if x ∈ A implies
λx ∈ A, with λ ≥ 0. Notice that, if A is a convex cone, then 0 ∈ A.

The dimension of a convex set K is that of the affine hull: dimK = dim affK.
Hyperplanes, halfspaces, affine subspaces, convex cones and polyhedra are convex

sets, and so is the space IEn. If A, B ⊂ IEn are convex, then A+B and λA, λ ∈ IR are
convex. Furthermore, the intersection and projection of convex sets are convex.

ELEMENTS OF POLYHEDRAL GEOMETRY 127

Example 4.2.2 (Convex hull)
In Script 4.2.2 a simple implementation of the ConvexHull operator is given, where
the function MK, introduced in Script 3.3.15, is defined as MK : IEn → P0,n. A different
implementation for the ConvexHull operator was provided in Script 3.2.1.

Script 4.2.2 (ConvexHull operator)
DEF ConvexHull (points::IsSeqof:IsPoint) = (JOIN ∼ AA:MK): points;

Homogenization A map

homog : IEn → IEn+1 : x ,→
(

1
x

)

is said to homogenize the points of a set A ⊂ IEn. A set of points A = {x0, x1, . . . , xd}
is affinely independent if and only if the vector images of points in homog (A) are
linearly independent.

Barycentric coordinates Let A = {x0, x1, . . . , xn} be affinely independent, and
y ∈ affA, i.e.:

y =
n

∑

i=0

λixi, with
n

∑

i=0

λi = 1.

The (unique) coefficients λ0, . . . , λd are called barycentric coordinates of y in A.

Carathéodory’s theorem This important theorem states that if A ⊆ IEn and
x ∈ conv A, then x can be expressed as the convex combination of at most n + 1
affinely independent points of A.

Simplex and its interior The set conv {x0, x1, . . . , xd} of d + 1 affinely
independent points of IEn, d ≤ n, is called d-simplex. Such points are called vertices.

A consequence of Carathéodory’s theorem is that a set conv A is the union of all
simplices with vertices in A.

Let A := {x0, x1, . . . , xn} be affinely independent, i.e. convA be a simplex, and
x ∈ affA. Then x ∈ relint conv A if and only if all the barycentric coordinates of x in
A are positive.

Example 4.2.3 (Barycentric coordinates)
To compute the barycentric coordinates λ = (λ0, λ1, . . . , λd) of a point x ∈ IEd,
either internal or external to a simplex conv {x0, x1, . . . , xd}, it is sufficient to solve
the simultaneous set of d +1 linear equations in d +1 unknowns, whose first equation
codifies the constraint that λ must be a partition of the unity:

(

1
x

)

=
(

1 1 · · · 1
x0 x1 · · · xd

)

λ,

128 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

so that

λ =
(

1 1 · · · 1
x0 x1 · · · xd

)−1(1
x

)

.

The above method is equivalent to computing a coordinate transformation for
homog (x) ∈ IEd+1 with respect to the new basis homog{x0, x1, . . .xd}.

Implementation A dimension-independent implementation of this approach is
given by the Convexcoords function in Script 4.2.3, together with some examples
of its use. Notice that the given implementation requires a Cartesian (say, without
homogeneous coordinate) representation of the input point x. Notice also that the
expression AA:[ID]:(1 AL x) generates a column matrix representation in IRd

1 of the
homogenized x point. For example:

AA:[ID]:(1 AL <0.5, 0, 0>) ≡ < < 1 > , < 0.5 > , < 0 > , < 0 > >

The overloaded * operator denotes here infix matrix multiplication. The IsSimplex
predicate is given in Script 4.4.1.

Script 4.2.3 (Barycentric coordinates)
DEF Convexcoords (p::IsSimplex)(x::IsPoint) = CAT:(

(INV ∼ TRANS ∼ AA:AL ∼ DISTL ∼ [K:1, S1] ∼ UKPOL):p
* AA:[ID]:(1 AL x)

);

Convexcoords:(SIMPLEX:3):< 1/3, 1/3, 1/3 > ≡
< 0.3333333333333333 , 0.3333333333333333 , 0.3333333333333333 , 0,0 >

The above example shows that the point x = (1/3, 1/3, 1/3) belongs to one of
external faces of the unit tetrahedron. The reader might find useful to look once more
at Example 3.2.6.

Example 4.2.4 (Hyperplane defined by n points in IEn)
It is often necessary to get the Cartesian equation ax1 + bx2 + cx3 +d = 0 of the plane
passing through three affinely independent points y0, y1, y2 ∈ IE3. This hyperplane is
defined as the set

H ⊂ IE3 = aff {y0, y1, y2} = y0 + lin{y1 − y0, y2 − y0},

so that dimH = 2.
This set may be generated, by using homogeneous coordinates, as the projection

of the linear subspace of IE4 spanned by linearly independent vectors (1, yi) ∈ IE4

(0 ≤ i ≤ 2), i.e. as the set

H = {x|(1, x) ∈ H ′},

with

H ′ = lin{(1, y0), (1, y1), (1, y2)}

ELEMENTS OF POLYHEDRAL GEOMETRY 129

With matrix language, and by using the standard notation for determinants,
i.e. detA = |A|, the previous statement reduces to:

det A =

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 x2 x3

1 y01 y02 y03

1 y11 y12 y13

1 y21 y22 y23

∣

∣

∣

∣

∣

∣

∣

∣

= 0,

since the first row is a linear combination of the others. Notice that rank A = 3, by
definition, since we supposed y0, y1, y2 affinely independent. By computing

det A =
4

∑

j=1

(−1)1+j |A1j| a1j = ax1 + bx2 + cx3 + d = 0

where A1j is the submatrix obtained by cancelling the first row and the j-th column
from A, we get

a = |A11|, b = −|A12|, c = |A13|, d = −|A14|.

This approach is readily extended to the hyperplane hT x + h0 = 0 defined by n
affinely independent points in IEn, so that hj = (−1)j+1|A1j|.

For example, the line in IE2 passing for (1, 0) and (0, 1) is

∣

∣

∣

∣

0 1
1 1

∣

∣

∣

∣

x1 −
∣

∣

∣

∣

1 1
0 1

∣

∣

∣

∣

x2 +
∣

∣

∣

∣

1 0
0 1

∣

∣

∣

∣

= −x1 − x2 + 1 = 0.

4.2.2 Support, separation, extreme points

The main source for this section, as well as for several concepts in this chapter, is
Schneider’s book [Sch93] on convex bodies and Brunn-Minkowski theory.

Support hyperplanes and halfspaces Let A ⊂ IEn, H ⊂ IEn be a set and a
hyperplane, respectively, with H+ and H− the two closed halfspaces bounded by H .
Then H supports A at x if x ∈ A ∩H and either A ⊂ H+ or A ⊂ H−.

The hyperplane H is called a support hyperplane of A if H supports some boundary
point x of A. If A ⊂ H+ (A ⊂ H−), then H+ (H−) is called a support halfspace of A.

The existence of support hyperplanes through every boundary point of a set A ⊂ IEn

characterizes it as a convex set. In fact, it is possible to prove [Sch93] that if this
existence is guaranteed, then the set is convex. Each non-empty closed convex set in
IEn is the intersection of its supporting halfspaces.

Separation The sets A and B are separated by an hyperplane H if A ⊂ H+ and
B ⊂ H−. non-empty convex sets A and B can be properly separated if and only if
relintA ∩ relintB = ∅

130 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Extremal points An extremal point of a convex set A is a point z ∈ A that cannot
be written in the form z = (1 − λ)x + λy, for x, y ∈ A and λ ∈ (0, 1). If {z} ⊂ A is a
face (see Section 4.4.2), then z is an extremal point.

It is very important to write a closed convex set as the convex hull of a much smaller
finite set. Minkowski’s theorem states that each convex body is the convex hull of its
extremal points.

4.2.3 Duality

Polar set of a convex Let S ⊂ IEn be a convex body with o ∈ intS. The polar set
of S is properly defined as the subset of dual space (IEn)∗:

S∗ := {y ∈ (IEn)∗|y(x) ≤ 1, for all x ∈ S}.

By the canonical isomorphism between (IEn)∗ and IEn induced by the Euclidean scalar
product, and the representation theorem (3.4), the polar set can be directly given in
IEn, as

S∗ := {y ∈ IEn|x · y ≤ 1, for all x ∈ S}.

Polarity is a duality It is possible to show that polarity is a true duality [Sch93],
since: the polar S∗ of a convex S is convex, satisfies the requirement that o ∈ intS∗,
and S∗∗ = S.

The polarity relation is called duality in many books, so that we use occasionally the
same word, mainly in Chapter 13. Notice that the polar set depends on the position of
o. This could be avoided by defining “cone polarity” between linearized sets [Zie95].

Example 4.2.5 (Polar sets of d-cubes)
A d-cube Cd is defined as a Cartesian product of d closed intervals [−1, 1] ⊂ IE:

Cd := [−1, +1]d = {x ∈ IEd|− 1 ≤ xi ≤ 1},

The polar set of the standard square C2 ⊂ IE2 is the rhombus C∗
2 . The polar set of

the standard cube C3 ⊂ IE3 is the octahedron C∗
3 . Both such cubes and their dual are

shown in Figure 4.2. Notice that faces of a convex body correspond to vertices of its
dual.

Implementation In Script 4.2.4 some PLaSM functions are given, to generate both
d-cubes and their polar sets.

In particular, DeHomog is the inverse of the homog operator of Section 4.2. In this
case it is not sufficient to drop the first coordinate of x = (x0, x1, . . . , xd), because it
may be x0 .= 1. In fact DeHomog is applied to covectors x ∈ (IEd)∗ returned by PLaSM
and these are stored in a normalized form such that |x| = 1.

The UKPOLF (UnmaKe POLyhedron by Faces) function, which is a predefined PLaSM
operator, returns the internal representation by faces of a polyhedral complex as a
triplet <covectors, cells, pols>, very similar to the triplet <vertices, cells,
pols> returned by the UKPOL operator. For example, we have:

ELEMENTS OF POLYHEDRAL GEOMETRY 131

Figure 4.2 (a) C2 cube and its polar set C∗
2 , known as rhombus ; (b) Octahedron

C∗
3 , polar set of the C3 cube

UKPOLF:(CUBOID:<1,1>) ≡ <
< < 1.0, 0.0, 0.0 >,
< -0.7071067811865475, 0.0, 0.7071067811865475 >,
< 0.0, 1.0, 0.0 >,
< 0.0, -0.7071067811865475, 0.7071067811865475 > >,

< < 1,2,3,4 > >, < < 1 > > >

Thus, the Polar function just constructs a polyhedron by using as vertices the
(projected) face covectors of its dual.

Finally, notice that Segment produces a direct construction of the interval [−1, 1]
as a polyhedron in P1,1, whereas

Cube : Z+ → Pd,d : d ,→ Cd,

with Z+ = {1, 2, . . .}, is the constructor function of d-cubes, via the Cartesian product
of d Segment instances. The last two expressions of Script 4.2.4 produce the geometric
objects displayed in Figure 4.2.

Script 4.2.4 (Polar sets of d-cubes)
DEF DeHomog = AA:/ ∼ DISTR ∼ [TAIL, FIRST];

DEF Polar = MKPOL ∼ [AA: DeHomog ∼ S1,S2,S3] ∼ UKPOLF;

DEF Segment = MKPOL:<<<-1>,<1>>,<<1,2>>,<<1>>>;
DEF Cube (d::IsIntPos) = (* ∼ #:d): Segment;
DEF Rhombus = (Polar ∼ Cube):2;
DEF Octahedron = (Polar ∼ Cube):3;

STRUCT:< (@1 ∼ Cube):2, Rhombus >;
STRUCT:< (@1 ∼ Cube):3, Octahedron >;

No test for x0 = 0 was actually performed before division in function DeHomog,
because we used the Polar function in the previous assumption that o ∈ intC, where
C is the input convex set.

A new implementation of DeHomog function is given in Script 4.2.5, where a test
for the null value of the homogeneous coordinate of covectors is performed. Such a
coordinate is simply dropped out when equal to zero, otherwise it is used to divide

132 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

the other ones. The CLOSETO function is used to test if the absolute value of difference
of the input to some real number is smaller than some given precision.

Script 4.2.5 (Polar sets)
DEF CLOSETO (precision::IsRealPos)(number::IsReal) =

IF:< LT: precision ∼ ABS ∼ - ∼ [ID, K:number], K:True, K:False >;
DEF RTAIL = REVERSE ∼ TAIL ∼ REVERSE;
DEF DeHomog =

IF:< CLOSETO:1E-12:0 ∼ LAST, RTAIL , AA:/ ∼ DISTR ∼ [RTAIL, LAST] >;
DEF Polar = MKPOL ∼ [AA: DeHomog ∼ S1,S2,S3] ∼ UKPOLF;

It is interesting to see in Script 4.2.6 that the Platonic solids, discussed in
Section 4.9.1, are pairwise polar, with the tetrahedron being the polar of itself. Notice
that in order to apply the polar function, the dodecahedron implementation given in
Script 4.9.4 as a multicell polyhedral complex, must be preliminary transformed into
a polyhedron constituted by a single cell. The single cell generated by the expression
JOIN:< dodecahedron > could be used for this purpose. A much better programming
strategy, which avoids the quite complex geometric construction of Script 4.9.4, is given
below; the icosahedron implementation is given in Script 4.9.5.

Script 4.2.6 (Polar of Platonic solids)
(Polar):tetrahedron ≡ tetrahedron

(Polar ∼ CUBOID):<1,1,1> ≡ octahedron
(Polar ∼ Polar ∼ CUBOID):<1,1,1> ≡ hexahedron

DEF dodecahedron1 = Polar:icosahedron;

(Polar):dodecahedron1 ≡ icosahedron
(Polar ∼ Polar):dodecahedron1 ≡ dodecahedron

4.2.4 Boundary structure

Let us suppose in this section that C ⊂ IEn is a non-empty closed convex set.

Faces A face of C can be defined as a convex subset F ⊆ C such that x, y ∈ C and
(x+y)/2 ∈ F implies x, y ∈ F . Notice that both C and ∅ are faces of C. A non-empty
face F is said to be proper when F is a proper subset of C. The set of faces of C will
be denoted as F(C). A face of dimension d will be called a d-face, and Fd(C) ⊂ F(C)
will denote the set of d-faces.

The relative interiors of any two faces in F(C) are disjointed. Thus, the family

{relintF |F ∈ F(C)} ∪ F0(C)

of relative interiors of faces of C, united with the set of 0-dimensional faces F0(C),
i.e. of faces {x}, where x is an extreme point, gives a partition of C into disjointed

ELEMENTS OF POLYHEDRAL GEOMETRY 133

subsets.

Skeletons The last property leads to a classification of a point x ∈ C depending on
the dimension of the uniquely determined face Fx whose relative interior x belongs
to. The set Kr(C) of all points x belonging to faces of dimension d ≤ r will be called
r-skeleton of C:

Kr(C) := {x ∈ Fx|Fx ∈ Fd(C), d ≤ r}.

Clearly for 0 ≤ r < dimC, Kr(C) ⊆ ∂C, where the equality holds if and only if
r = dimC − 1.

4.3 Polyhedral sets

Polyhedra and cones are collectively called polyhedral sets. They are often referred to
as H-polyhedra, which means that they can be presented as the intersection of closed
halfspaces.

Definitions A set P ∈ IEn is a polyhedron if and only if it is the intersection of a
finite number of closed halfspaces. So, we define:

H(P) := P (A, b) := {x ∈ IEn|Ax ≤ b},

for some A ∈ IRm
n and some b ∈ IRm.

A set C ∈ IEn is said a polyhedral cone if and only if

H(C) := C(A, 0) := {x ∈ IEn|Ax ≤ 0},

for some A ∈ IRm
n . Such a kind of set is both a cone and a polyhedron.

4.3.1 Extremal points

A point of a convex set P is called an extremal point if it cannot be written as
(1 − α)x + αy, with x, y ∈ P and 0 < α < 1. The set of extremal points of P is
denoted as ext P .

The inequality ax ≤ β is said to be valid with respect to the polyhedron P if and
only if P ⊆ H+

a,β.
The hyperplane Ha,β is said to be a support hyperplane for the P polyhedron if

either ax ≤ β or ax ≥ β is valid and Ha,β ∩ P .= ∅.
Let P ⊂ IEn be a polyhedron and H a support hyperplane of P . The set F = P ∩H

is called a face of P . The F face is a vertex if dim F = 0; it is an edge if dimF = 1,
and it is a facet if dimF = n − 1.

Algebraic characterization of vertices Let P = P (A, b) be a polyhedron of IEn,
with A ∈ IRm

n and b ∈ IRm. A point x ∈ P is an extreme of P if and only if it satisfies
as equations n rows of the system Ax ≤ b. It follows that a polyhedron P (A, b) ⊂ IEn

contains extreme points if and only if rankA = n.
The extreme points of P (A, b) ∈ IEn, if they exist, are a discrete set denoted

extP (A), and their number at most equates the number
(m

n

)

of A minors with rank
n. Such points are called polyhedron vertices.

134 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

4.3.2 Double description

The following main theorems[Zie95] give three pairs of alternative characterization of
polyhedra, polytopes, and cones, respectively, that appear all to be very useful, maybe in
different contexts. Notice that the same notation is used both for matrices, considered
as sets of column vectors, and for sets of points in Euclidean space. For proofs, the
reader is referred to [Zie95].

Theorem 4.3.1 (Main theorem for polyhedra) A set P ⊆ IEd is the sum of a
convex hull of a finite set of points plus a conical combination of vectors, say, a V-
polyhedron

P = conv V + cone E, for some V ∈ IEd
n, E ∈ IRd

n′,

if and only if it is an intersection of halfspaces, say a H-polyhedron

P = P (A, b), for some A ∈ IEm
d , b ∈ IEm,

with V = extP (A, b) and coneE = P (A, 0).

In other terms, a set P ⊆ IEd can be finitely generated either as a convex-
conical combination of vectors (V-polyhedron) or as the intersection of halfspaces
(H-polyhedron). If P (A, 0) = {0}, the V-polyhedron is called polytope or V-polytope,
so that the previous theorem becomes the following one.

Theorem 4.3.2 (Main theorem for polytopes) A set P ⊆ IEd is the convex hull
of a finite set of points, say a V-polytope

P = conv V, for some V ∈ IEd
n

if and only if it is a bounded intersection of halfspaces, say a H-polytope

P = P (A, b), for some A ∈ IEm
d , b ∈ IEm.

An alternate definition of a polytope P is as a bounded polyhedron, i.e. such that
there exists some κ ∈ IR such that |x−y| < κ for each x, y ∈ P . Finally, if ext P = {0},
then the V-polyhedron is called a polyhedral cone. In this case we have:

Theorem 4.3.3 (Main theorem for cones) A set C ⊆ IEd is the conical
combination of a finite set of vectors

C = coneE, for some E ∈ IEd
n

if and only if it is a finite intersection of closed halfspaces containing the origin

C = P (A, 0), for some A ∈ IEm
d .

ELEMENTS OF POLYHEDRAL GEOMETRY 135

Note The PLaSM kernel maintains both a H- and a V-representation of convex cells of
a polyhedral complex. They are used as primary representations in the implementation
of different operations. For example, the H–representation is mainly useful with the
Cartesian product and the Boolean operations, whereas the V–representation is needed
to generate the graphical output and to compute the inertial properties of a polyhedral
complex.

4.4 Polytopes

We already know that a polyhedron is the solution set of a system of linear inequalities
Ax ≤ b, and that a polytope is a bounded polyhedron. In particular we know that
a polyhedron is a polytope when it does not contain a cone, i.e. when the associated
homogeneous system Ax ≤ 0 has no solutions different from the zero vector.

Properties Some useful properties of polytopes are listed below.

1. Each polytope is the intersection of finitely many closed halfspaces.
2. Each bounded intersection of finitely many closed halfspaces is a polytope.
3. The join, intersection, sum, product, projection of polytopes is a polytope.
4. The projection of a simplex is a polytope.
5. The polar body of a polytope is a polytope.
6. Each face of a polytope is a polytope.
7. Each proper face of a polytope P is contained in some facet of P .

Simplicial and simple polytopes A polytope P ⊂ IEd is said to be simplicial
when all its facets are simplices. It is said to be simple when each vertex is generated
as intersection of the minimal number d of facets. Examples of simplicial polytopes are
the octahedron and the icosahedron, where each face is a triangle. Examples of simple
polytopes are the cube and the dodecahedron, where each vertex is the intersection
of three facets. Simplicial and simple polytopes are linked by polarity: the polar of
a simple polytope is a simplicial polytope, and vice versa. Simplices are the only
polytopes which are both simple and simplicial.

Example 4.4.1 (IsPolytope and IsSimplex predicates)
Two PLaSM predicates IsPolytope and IsSimplex are given in Script 4.4.1, in order
to test if a geometric object is respectively a polytope or a simplex (of whatever
dimensions) or not. Both predicates contain a logical AND of two component predicates.
The predefined IsPol function is used to check if the function input is a polyhedral
complex; the second predicate of IsPolytope just checks if the input contains a unique
convex cell. The IsSimplex function aims to verify if the input is a polytope and if
the number of vertices is n + 1, where n is the dimension of the embedding space IEn

of the input object.

4.4.1 Examples of polytopes

Some interesting and useful classes of polytopes are studied and implemented in this
section. In particular, we give generative functions for regular polygons in 2D, the

136 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Script 4.4.1 (IsPolytope and IsSimplex)
DEF IsPolytope = AND ∼ [IsPol, EQ ∼ [LEN ∼ S2 ∼ UKPOL, K:1]];

DEF IsSimplex = AND ∼ [IsPolytope, EQ ∼ [LEN ∼ S1 ∼ UKPOL, RN + K:1]];

IsSimplex:(CUBOID:<1>) ≡ True
IsSimplex:(SIMPLEX:3) ≡ True
IsSimplex:(CUBOID:<1,1>) ≡ False
IsPolytope:(CUBOID:<1,1>) ≡ True

standard d-simplex, the d-dimensional crosspolytope, the pyramid and the prism over
a d-polytope, and the d-dimensional permutahedron, where d is an arbitrary positive
integer.

Regular polygons

2-polytopes with n vertices are called n-gons or polygons. The word polygon is
normally reserved to denote a larger class of 2D geometric objects, that are not
necessarily convex. No ambiguity arises with regular polygons, which are n-gons with
internal angles of equal size 2π

n .
Regular polygons are easily generated by the ngon function of Script 4.4.2 as

polyhedral approximation of the unit circle. The Circumference function given in
Script 1.6.1 is used at this purpose. The last expression generates the compound
geometric value with interposed translations shown in Figure 4.3.

Script 4.4.2 (Regular polygons)
DEF ngon (n::AND ∼ [IsIntPos, GE:3]) = Circumference:1:n;

(STRUCT ∼ CAT): (AA:ngon:(3..8) DISTR T:1:2.5)

Figure 4.3 Regular polygons with a number of sides from 3 (triangle) to 8

(octagon)

Standard d-simplex

In some books, including [Zie95], the standard d-simplex ∆d is defined in IEd+1 as the
intersection of the hyperplane 11x = 1 with the standard cone x ≥ 0, i.e.:

∆d := {x ∈ IEd+1|11x = 1, x ≥ 0} = conv {e1, . . . , ed+1}

ELEMENTS OF POLYHEDRAL GEOMETRY 137

Conversely, in PLaSM, the unit d-simplex is defined in IEd as

SIMPLEX:d ≡ conv {o, e1, . . . , ed}.

Generating ∆d is very simple. A direct generation method as convex hull of
the extreme points of vectors {ei} ⊂ IEd+1 is given in Script 4.4.3 by the Delta
function. The IDNT function, used to produce the sequence of {ei} vectors, is given in
Script 3.3.5.

The MyFrame function simply produces a polyhedral complex in P1,d, whose cells
are bijectively associated to vectors ei, with 1 ≤ i ≤ d. Each unit vector “image” is
scaled to 1.5 size.

A picture of the generated ∆2, compared to a picture of SIMPLEX:2, is shown in
Figure 4.4.1. The second one is clearly reducible to the first by an affine transformation.
The associated geometric objects are produced by the last two expressions of
Script 4.4.3.

Script 4.4.3 (Standard d-simplex)
DEF Delta (d::IsInt) = MKPOL:< IDNT:(d+1), <1..(d+1)>, <<1>> >;

DEF MyFrame (d::IsInt) = (S:(1..d):(#:d:1.5) ∼ MKPOL):
< #:d:0 AL IDNT:d, 1 DISTL (2..(d+1)), <1..d> >;

STRUCT:<Delta:2, MyFrame:3>;
STRUCT:<SIMPLEX:2, MyFrame:2>;

Figure 4.4 (a) Standard d-simplex ∆2; (b) Geometric value generated by

SIMPLEX:2

d-dimensional crosspolytope

A crosspolytope of dimension d, denoted C∆
d , is the convex hull of the set {ei}∪{−ei},

1 ≤ i ≤ d. Such polytopes are very easy to build with PLaSM, as the polyhedral complex
whose vertices are generated by the expression

138 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

(CAT ∼ [ID, (AA ∼ AA):-] ∼ IDNT):d

and having just one convex cell, i.e. the convex hull of the above 2d vertices. A
generating function

CrossPolytope:Z+ → Pd,d : d ,→ C∆
d ,

with Z+ = {1, 2, 3, . . .}, is given in Script 4.4.4. The geometric constructions in
Figure 4.5, with rhombus ⊂ IE2, octahedron ⊂ IE3 and their coordinate axes, are
respectively generated by the last two PLaSM expressions.

Script 4.4.4 (d-Crosspolytopes)
DEF CrossPolytope (d::IsIntPos) = MKPOL:<

(CAT ∼ [ID, (AA ∼ AA):-] ∼ IDNT):d, <1..(2*d)>, <<1>> >;

(STRUCT ∼ [CrossPolytope, Frame]):2;
(STRUCT ∼ [CrossPolytope, Frame]):3;

Figure 4.5 CrossPolytopes C∆
2 and C∆

3

Prism over a polytope

A prism over a polytope P is defined as a Cartesian product of the polytope times a
unit interval [0, 1] ⊂ IR.

Prism : Pd,n → Pd+1,n+1 : P ,→ P × [0, 1]

The PLaSM implementation is extremely simple, because we may use the operation
of Cartesian product (see Section 14.4) as a language primitive. The Prism definition
is here usefully abstracted with respect to the basis object and to the height of the
generated object. This operation is called linear extrusion in solid modeling.

Script 4.4.5 (Prism over a polytope)
DEF Prism (height::IsRealPos)(basis::IsPol) = basis * QUOTE:< height >;

Clearly, the basis object can be either a polytope or a polyhedral complex.

ELEMENTS OF POLYHEDRAL GEOMETRY 139

Permutahedron

The permutahedron Πd−1 ⊂ IEd is defined as the convex hull of the permutations of
the first d integers, i.e.:

Πd−1 := {x ∈ conv { (πi(1), πi(2), . . . , πi(d)) ∈ IEd} }, i ∈ {1, . . . , d!}.

We remember that each permutation πi of a finite set is a bijective mapping on it,
and in particular:

πi : {1, 2, . . . , d}→ {1, 2, . . . , d}, bijective.

Clearly, each point (πi(1), πi(2), . . . , πi(d)) belongs to the sphere Sd−1 ⊂ IEd of
radius (πi(1)2+πi(2)2+· · ·+πi(d)2) 1

2 . It is possible to show that dim (aff Πd−1) = d−1.

Permutations The permutations function given in Script 4.4.6, is a general utility
operator that allows generation of the (images of) the whole group of permutations of
<1,2, . . . ,d>.

The used algorithm starts with the pair <<>,<1,2, . . . ,d>> and produces d pairs
<<1>,<2, . . . ,d>>, <<2>,<1,3, . . . ,d>>, . . . ,<<d>,<1,2, . . . ,d−1>>; then from
each <<i>,<1, . . . ,i − 1,i + 1, . . . ,d>> produces d − 1 pairs <<i,1>,<2, . . . ,i −
1,i+ 1, . . . ,d>>, <<i,2>,<1,3, . . . ,i− 1,i+ 1, . . . ,d>>, . . . , and so on, until the
second sequence of each pair becomes empty and is removed.

Script 4.4.6 (Permutations)
DEF remove (n::IsIntPos; seq::IsSeq) =

(CONS ∼ AA:SEL ∼ CAT):< 1 .. n - 1, n + 1 .. LEN:seq >:seq;

DEF permutations (seq::IsSeq) =
COMP:(AA:CAT AL #:n:(CAT ∼ AA:permute)):<< <>, seq>>

WHERE
n = LEN:seq,
extract = AA: remove ∼ DISTR ∼ [INTSTO ∼ LEN, ID],
permute = TRANS ∼ [AA:AR ∼ DISTL, extract ∼ S2]

END;

permutations:<1,2,3> ≡ <<1,2,3>,<1,3,2>,<2,1,3>,<2,3,1>,<3,1,2>,<3,2,1>>

permutations:<1,2,3,4> ≡
<<1,2,3,4>,<1,2,4,3>,<1,3,2,4>,<1,3,4,2>,<1,4,2,3>,<1,4,3,2>,<2,1,3,4>
,<2,1,4,3>,<2,3,1,4>,<2,3,4,1>,<2,4,1,3>,<2,4,3,1>,<3,1,2,4>,<3,1,4,2>
,<3,2,1,4>,<3,2,4,1>,<3,4,1,2>,<3,4,2,1>,<4,1,2,3>,<4,1,3,2>,<4,2,1,3>
,<4,2,3,1>,<4,3,1,2>,<4,3,2,1>>

Permutahedron implementation As always in this book, a complete implemen-
tation of the studied object follows. In particular, the Πd−1 permutahedron is imple-
mented in a dimension-independent fashion in Script 4.4.7. Pictures of the objects
generated by the last expressions are shown in Figure 4.6.

140 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Figure 4.6 (a) Permutahedron Π2 (b) Permutahedron Π3 (c) 1-skeleton of Π3

A d-dimensional object is first generated by MKPOL as the polytope with vertices
given by permutations:<1, . . . ,d+1>. The function translation is then applied to
it, so moving its Meanpoint to the origin. Then a suitable sequence of rotations is
applied, until the set aff translation:object is rotated to the coordinate subspace
{x|xd+1 = 0}. The last (zero) coordinate is finally eliminated by application of the
function project:1.

Script 4.4.7 (Permutahedron)
DEF permutahedron (d::IsIntPos) =

(project:1 ∼ rotations ∼ translation):object
WHERE

object = (MKPOL ∼ [ID, [INTSTO ∼ LEN], K:<<1>>]): vertices,
vertices = permutations:(1 .. (d+1)),
center = Meanpoint: vertices,
translation = T:(1..(d+1)):(AA:-: center),
rotations = COMP:(((CONS ∼ AA:R):(1..d DISTR (d+1))):(PI/4))

END;

VRML: ((STRUCT ∼ [ID, @1]):(permutahedron:2)):′out1.wrl′;
VRML: ((STRUCT ∼ [ID, @1]):(permutahedron:3)):′out2.wrl′;
VRML: (@1:(permutahedron:3)):′out3.wrl′;

It may be interesting to notice that polytopes Π2 and Π3 are subject to rotations
tensors

(COMP ∼ [R:<1,3>, R:<2,3>]):π
4 ,

(COMP ∼ [R:<1,4>, R:<2,4>, R:<3,4>]): π
4

respectively, before being projected, as they are generated in higher dimension.
Analogously, for the Πd polytope we have:

(COMP ∼ [R:<1,d+1>, R:<2,d+1>, . . . , R:<d,d+1>]):π
4

The diligent reader might also like to know that the functions Meanpoint and project
are defined in Scripts 4.4.8 and 4.4.9, respectively.

4.4.2 Faces of polytopes

Let P = P (A, b) ⊂ IEn be a polytope.

ELEMENTS OF POLYHEDRAL GEOMETRY 141

A set F ⊂ P is called a face of P if there exists a valid inequality aT x ≤ β such
that F = {x ∈ P |aT x = β}. F is said to be the face induced by aT x ≤ β.

Face lattice Both the sets F = P and F = ∅ are faces of P , because the above
definition is satisfied by the equalities 0x = 0 and 0x = −1, respectively.

Also, every intersection of faces is a face. In fact, let Fi = {x ∈ P |aT
i x = βi} and

Fj = {x ∈ P |aT
j x = βj}. Then we have that the set Fi ∩ Fj is induced by any linear

combination of the equations of Fi and Fj , for example:

Fi ∩ Fj = {x ∈ P |(aj + aj)T x = (βi + βj)},

and hence is a face.
It is possible to see [Zie95] that the set F(P) of faces of a polytope P is a lattice, i.e. a

partially ordered algebraic structure with unit P and zero ∅, and with two operations
join (∨) and meet (∧) that satisfy the standard axioms of Boolean algebras. The two
operations respectively return the unique minimal common ancestor and the unique
maximal common descendant of any pair of faces, being the lattice partially ordered
with respect to a containment relation.

Such algebraic structure is particularly easy to see in F(σd), where σd is a simplex,
and the face lattice is isomorphic to the family 2V (σd) of subsets of σd vertices.

Dimension The dimension of a face F is the dimension of affF .

Pyramid over a polytope

A pyramid is defined as the convex combination of a d-polytope P ⊂ IEn and a point
y .∈ affP :

Pyramid : Pd,n × IEn → Pd+1,n : (P, y) ,→ conv (P ∪ {y}).

Polytope P and point y are called the basis and apex of the pyramid, respectively.

Faces of pyramid The set F(Q) of faces of Q = pyramid(P, y) is easy to compute:

F(Q) = F(P) ∪ {Fy|F ∈ F(P)} ∪ {Py}.

where Ax stands for the join of the set A and the point x.

Implementation The implementation of Script 4.4.8 assumes P to be full-
dimensional, and embeds it so that affP := {x ∈ IEn+1|xn+1 = 0}, and sets
y := (Meanpoint V(P), h), h .= 0, where Meanpoint S = 1

|S|
∑

S, with S ⊂ IEn

a discrete set. Notice that Meanpoint S ∈ conv S, because it is a convex combination
of points of S. The function

MK : IEn → P0,n : x ,→ conv {x}

may be found in Script 3.3.15.
The geometric object generated by last expression of the script below is shown

in Figure 4.7. The function SPLIT, to extract the sequence of convex cells from a
polyhedral complex, is given in Script 10.8.4. The definition of the house2 object,
entered as a triangleStrip, can be found in Script 7.2.19.

142 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Script 4.4.8 ((d + 1)-pyramid)
DEF mean = + / LEN;

DEF Meanpoint = AA:mean ∼ TRANS;
DEF Pyramid (h::IsReal) = JOIN

∼ [EMBED:1, MK ∼ AR ∼ [Meanpoint ∼ S1 ∼ UKPOL, K:h]];

(STRUCT ∼ AA:(Pyramid:1) ∼ SPLIT): house2;

Figure 4.7 Pyramids over the convex cells of a polyhedral complex generated as a

triangle strip

4.4.3 Projection

Given two H-polyhedra P and Q, such that

P (A, b) ⊂ IEn, and Q(A′, b′) ⊂ IEq,

with q ≤ n, we say that Q is obtained by projection of P if and only if:

y ∈ Q ⇐⇒ ∃z ∈ IEn−q such that x = (y, z) ∈ P

Algebraically speaking, we say that the system of inequalities A′y ≤ b′ is derived
from Ax ≤ b by eliminating the components of z.

It turns out more useful to define a projection operator along a single coordinate
direction. Let us start with P (A, b) ⊂ IEn and suppose we want to project on the
coordinate hyperplane {x ∈ IEn|xk = 0}. So we define, following Ziegler [Zie95], the
projection of P in the direction of ek as:

projk P := {x− xkek|x ∈ P }
= {x ∈ IEn|xk = 0, ∃y ∈ IR : x + yek ∈ P }.

A very similar set is the elimination of xk in P, defined as follows. Both projk P
and elimk P are shown in Figure 4.8.

elimk P := {x− tek|x ∈ P }
= {x ∈ IEn|∃y ∈ IR : x + yek ∈ P }.

Clearly, given P ⊆ IEn, there is an isomorphism

elimk P ∼= projk P × IE,

ELEMENTS OF POLYHEDRAL GEOMETRY 143

P

proj P

elim Px

k

k k

Figure 4.8 Polyhedron P and associated set projk P and elimk P

which reduces to equality when k = n and the last coordinate of points in projn P is
dropped out:

elimn P = {x ∈ IEn−1|(x, 0) ∈ projn P })× IE

Example 4.4.2 (Projection operator)
A possible PLaSM implementation of a projection operator

Project : Z+ × IEn → IEn−m : (m, P) ,→ (projn−m ◦ · · · ◦ projn−1 ◦ projn)P,

where Z+ is the set of positive integers, is given in Script 4.4.9. The last expression
shows that Project:2, when applied to a 5-dimensional object, returns a 3-
dimensional object. The implementation clearly exploits the property that the
projection of a collection {P (Vi)} of V-polytopes is the collection of convex hulls
of the projected vertices:

projk {P (Vi)} = {projk P (Vi)} = {conv (projk Vi)}

Script 4.4.9 (Projection operator)
DEF Project (m::IsIntPos)(pol::IsPol) =

(MKPOL ∼ [AA:CutCoords ∼ S1, S2, S3] ∼ UKPOL):pol
WHERE

CutCoords = Reverse ∼ (COMP ∼ #:m):TAIL ∼ Reverse
END;

Project:2:(CUBOID:<1,1,1,1,1>) ≡ CUBOID:<1,1,1>

Fourier-Motzkin elimination The so-called Fourier-Motzkin projection method,
also known as Fourier-Motzkin elimination, finds one solution, if it exists, of a system
of simultaneous linear inequalities. In particular, this algorithm solves a system
A(1)x(1) ≤ b(1) with n variables, by projecting it onto a system A(2)x(2) ≤ b(2), with
n−1 variables, and so on, until a final projected system A(n)x(n) ≤ b(n) with only one

144 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

variable is obtained. A single inequality in only one variable is easy to study. If it cannot
be solved, then the original system is incompatible, i.e. cannot be solved. Otherwise,
a solution of A(n)x(n) ≤ b(n) is used in the backward phase of the algorithm to
reconstruct a solution x to the original system. A detailed discussion of this algorithm
is out the scope of the present book. The interested reader is referred to [DC73].

4.5 Simplicial complexes

We already met a definition of simplex as the convex hull of affinely independent
points. A slightly different approach and notation are used in this section to discuss
simplices and well-formed assemblies of simplices, called simplicial complexes, by using
language and terminology from algebraic topology [Poi53]. At the end of this section
we give a function to generate the so-called (after Maldelbrot [Man88]) fractal simplex
of dimension d and depth n, with d, n arbitrary positive integers

4.5.1 Definitions

A notational warning is first needed. We use here simple subscripts both to denote
dimension and indices. In case of possible confusion, parenthesized subscripts are used
as indices.

Join operation The join of two sets P, Q ⊂ IEn is the set

PQ = {αx + βy| x ∈ P, y ∈ Q},

where α, β ∈ IR, α, β ≥ 0 and α + β = 1. The join operation is associative and
commutative.

Example 4.5.1 (JOIN primitive)
PLaSM offers a primitive operator from sequences of polyhedra in IEn to polyhedra in
IEn:

JOIN : (Pdi,n)∗ → Pm,n : {P1, . . . , Ps} ,→ conv P1 ∪ . . . ∪ Ps, i ∈ {1, . . . , s},

where m = dimconv P1 ∪ . . . ∪ Ps. JOIN can be also applied to sequences of points
in the same space, but they must be preliminarily transformed into 0-dimensional
polyhedra.

Simplex A d-simplex σd ⊂ IEn (0 ≤ d ≤ n) may be defined as the repeated join
of d + 1 affinely independent points, called vertices. A d-simplex can be seen as a
d-dimensional triangle: a 0-simplex is a point, a 1-simplex is a segment, a 2-simplex is
a triangle, a 3-simplex is a tetrahedron, and so on.

The set {v0, v1, . . . , vd} of vertices of σd is called the 0-skeleton of σd. The s-simplex
generated from any subset of s + 1 vertices (0 ≤ s ≤ n) of σd is called an s-face of σd.

Let us notice, from the definition, that a simplex may be considered both as a purely
combinatorial object and as a geometric object, i.e. as the compact point set defined
by the convex hull of a discrete set of points.

ELEMENTS OF POLYHEDRAL GEOMETRY 145

Complex A set Σ of simplices is called a triangulation. A simplicial complex, often
simply denoted as complex, is a triangulation Σ that verifies the following conditions:

1. if σ ∈ Σ, then any face of σ belongs to Σ;
2. if σ, τ ∈ Σ, then either σ ∩ τ = ∅, or σ ∩ τ is a face of both σ and τ .

A simplicial complex can be considered a “well-formed” triangulation. Such kind of
triangulations are widely used in engineering analysis, e.g., in topography or in finite
element methods.

The order of a complex is the maximum order of its simplices. A complex Σd of
order d is also called a d-complex. A d-complex is said to be regular or pure if each
simplex is a face of a d-simplex. A regular d-complex is homogeneously d-dimensional.

The combinatorial boundary Σd−1 = ∂σd of a simplex σd is a simplicial complex
consisting of all proper s-faces (s < d) of σd.

Two simplices σ and τ in a complex Σ are called s-adjacent if they have a common
s-face. Hereafter, when we refer to adjacencies into a d-complex, we intend to refer to
the maximum order adjacencies, i.e. to (d− 1)-adjacencies. Ks (s ≤ d) denotes the set
of s-faces of Σd, and |Ks| denotes the number of s-simplices.

With some abuse of language, we call (combinatorial) s-skeletons the sets Ks (s ≤ d).
Geometric carrier |Σ|, also called the support space, is the point set union of simplices
in Σ.

Orientation The ordering of the 0-skeleton of a simplex implies an orientation of
it. The simplex can be oriented according to the even or odd permutation class of
its 0-skeleton. The two opposite orientation of a simplex will be denoted as +σ and
−σ. Two simplices are coherently oriented when their common faces have opposite
orientation. A complex is orientable when all its simplices can be coherently oriented.
It is assumed that:

1. the two orientations of a simplex represent its relative interior and exterior;
2. the two orientations of an orientable simplicial complex analogously represent

the relative interior and exterior of the complex, respectively;
3. the boundary of a complex maintains the same orientation of the complex.

The volume associated with an orientation of a simplex (or complex) is positive,
while the one associated with the opposite orientation has the same absolute value and
opposite sign. It is assumed that the bounded object has positive volume. It is also
assumed that either a minus sign or a multiplying factor −1 denote a complementation,
i.e. an opposite orientation of the simplex, which can be explicitly obtained by
swapping two vertices in its ordered 0-skeleton. For example:

+σ3 = 〈v0, v1, v2, v3〉
−σ3 = 〈v1, v0, v2, v3〉

Face extraction The oriented facets σd−1,(i) (0 ≤ i ≤ d) of the oriented d-simplex
σd = +〈v0, v1, . . . , vd〉 are obtained by removing the i-th vertex vi from the 0-skeleton
of σd:

σd−1,(i) = (−1)i(σd − 〈vi〉), 0 ≤ i ≤ d. (4.1)

146 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

v

v

v1

v2

3

0

Figure 4.9 Coherent orientation of the faces of a 3-simplex

The 0-skeleton of σd−1,(i) is therefore obtained by removing the i-th vertex from the
0-skeleton of σd and either by swapping a pair of vertices or, better, by inverting the
simplex sign, when i is odd.

Finally, we will use the notation A(σ(i)) to denote the unique d-simplex which is
(d− 1)-adjacent to σ along the face σ(i), if it exists. When σ(i) is a boundary simplex,
A(σ(i)) is not defined, which we denote by A(σ(i)) = ⊥.

Oriented faces of a simplex According to equation (4.1), the set of 2-
faces (see Figure 4.9) of the 3-simplex σ3 = +〈v0 , v1, v2, v3〉 is: K2(σ3) =
{σ2,(0), σ2,(1), σ2,(2), σ2,(3)}, where

σ2,(0) = +〈v1, v2, v3〉,
σ2,(1) = −〈v0, v2, v3〉,
σ2,(2) = +〈v0, v1, v3〉,
σ2,(3) = −〈v0, v1, v2〉.

Notice that all the triangle faces of the tetrahedron σ3 are coherently oriented, and
that, by using again the equation (4.1), the edges of triangles are generated coherently
oriented.

For instance, taking σ2,(0) = +〈v1, v2, v3〉 and σ2,(1) = −〈v0, v2, v3〉, we see that
their common faces σ1,(0),(0) = +〈v2, v3〉 and σ1,(1),(0) = −〈v2, v3〉, built according
again to (4.1), have opposite orientations.

Simplicial prism The prism over a simplex σd = 〈v0, . . . , vd〉, defined as the set
Pd+1 := σd × [a, b], with [a, b] ⊂ IE, will be called simplicial (d+1)-prism. An oriented
complex which triangulates Pd+1 can be defined combinatorially, by using a closed
form formula for its Kd+1 skeleton:

Kd+1 = {σd+1,(i) = (−1)id〈va
i , va

i+1, . . . , va
d, vb

0, v
b
1, . . . , vb

i 〉|0 ≤ i ≤ d}

where va
i = (vi, a) and vb

i = (vi, b).

Implementation To generate a triangulation of the simplicial d-prism is quite easy,
by considering that the simplices in Kd+1 = {σd+1,(i)|0 ≤ i ≤ d} of the previous

ELEMENTS OF POLYHEDRAL GEOMETRY 147

Figure 4.10 Triangulation of the prisms over: (a) 1-simplex (b) 2-simplex (c)

3-simplex, with the basis simplices highlighted.

formula can simply be obtained by extracting the adjacent (d + 2)-tuples from the
ordered set

(va
0 , v

a
1 , . . . , va

d, vb
0, v

b
1, . . . , vb

d)

with 2(d + 1) elements.
The geometric object in Figure 4.10b is generated by the last expression of

Script 4.5.1. The object shown in Figure 4.10c is first rotated in IE4, then projected
in IE3. The IsSimplex predicate is given in Script 4.4.1.

Script 4.5.1 (Triangulation of simplicial d-prism)
DEF simplexPile (cell::IsSimplex) = (MKPOL ∼ [ID, cells, pols]):verts

WHERE
cells = TRANS ∼ AA:FROMTO ∼ ((CONS ∼ AA:CONS ∼ TRANS):

< AA:K:(1..(d+1)), (AA:(- ∼ [K:LEN, K]) ∼ reverse):(0..d) >),
pols = AA:LIST ∼ INTSTO ∼ K:d,
verts = (CAT ∼ AA:(S1 ∼ UKPOL) ∼ [ID, T:n:1] ∼ EMBED:1): cell,
d = DIM: cell + 1,
n = RN: cell + 1

END;

(STRUCT ∼ [@1 ∼ simplexPile, ID] ∼ SIMPLEX):2

Closed formulas to triangulate the (d + 1)-prism over a d-complex in a time linear
with the size of the output, while computing also the d-adjacencies between the
resulting (d + 1)-simplices, can be found in [FP91].

4.5.2 Linear d-Polyhedra

In some algebraic topology books a definition of d-polyhedron is given, that is quite
different from the one discussed in Section 4.3.

In this case a d-polyhedron is defined as a compact set Pd ⊂ IEn for which at least
a pair (Σd, h) exists, where Σd (d ≤ n) is a simplicial d-complex, and h : Pd → |Σd|
is a homeomorphic map.1

Following the above definition, polyhedra are not necessarily linear; for example, a
sphere or a torus or a free-form surface are polyhedra.

1 A homeomorphic map is an invertible continuous topological transformation.

148 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Figure 4.11 Skeletons Ks(P2), (2 ≥ s ≥ 0)

A polyhedron is regular if any associated complex is regular; it is linear if the map
h is the identity map. Hence, a linear polyhedron coincides with the geometric carrier
of a simplicial complex (see Figure 4.11). Since we deal only with linear polyhedra,
we may use equally the terms polyhedron and complex.

Boundary If any (d− 1)-simplex in Σ is a face of exactly two d-simplices, then Σ is
said to be closed; otherwise it is said to be open. As an example, let us consider any
1-complex and any 2-complex which triangulate the circumference S1 and the circle
S2, respectively: the first complex is closed; the second is open.

The boundary ∂Pd of a polyhedron Pd is the geometric carrier of the (d − 1)-
complex whose (d−1)-simplices are faces of exactly one d-simplex in a complex which
triangulates Pd. An important theorem states that a closed complex has no boundary:

∂∂Pd = ∅.

A maximal (d− 1)-connected component of a closed d-complex is called a shell of the
complex.

4.5.3 Fractal d-simplex

We discuss in this section the generation of the fractal d-simplex, sometimes also called
the recursive d-simplex or the Sierpinski simplex, that is generated by subtracting from
the standard simplex of the same dimension a central portion defined by the convex
hull of middle points of 1-faces.

This subtraction generates d + 1 new d-simplices, each one adjacent to one of the
vertices of the original d-simplex. The 1-faces of the new simplices have half-length
with respect to the original ones. This process may be repeated on each of the d + 1
d-simplices previously generated, so producing (d + 1)2 d-simplices. The subdivision
can be repeated several times, producing (d+1)n d-simplices after n subdivision steps.
They are spatially organized as a sort of d-dimensional fractal structure, as shown by
Figures 4.12 and 4.13.

Implementation We implement here a PLaSM function fractalSimplex, which is
used to produce the fractal d-simplex of any depth n.

Let us first define a component function which transforms the sequence of vertices
of a simplex into a new sequence where the i-th vertex, called the pivot, is fixed,
whereas the other are moved to the Meanpoint between the pivot position and their
old position. The script also shows two examples of use of the component function on
the vertices of the standard IE2 triangle.

A local function named expand is used to transform the sequence of the d + 1
vertices of a d-simplex into the sequence of sequences of vertices of the d+1 d-simplices

ELEMENTS OF POLYHEDRAL GEOMETRY 149

Figure 4.12 (a) Fractal triangle of depth 5 generated by fractalSimplex:2:5 (b)

Fractal tetrahedron of depth 3 generated by fractalSimplex:3:3

Script 4.5.2
DEF component (i::IsIntPos; seq::IsSeq) = CAT:< firstPart, <pivot>, lastPart >

WHERE
firstSeq = AS:SEL:(1..(i - 1)):seq,
pivot = SEL:i:seq,
lastSeq = AS:SEL:((i + 1)..LEN:seq):seq,
firstPart = (AA:Meanpoint ∼ DISTR):< firstSeq, pivot >,
lastPart = (AA:Meanpoint ∼ DISTR):< lastSeq, pivot >

END;
DEF triangle = <<0.0, 0.0>, <0.0, 1.0>, <1.0, 0.0>>

component:<1, triangle> = <<0.0, 0.0>, <0.0, 0.5>, <0.5, 0.0>>
component:<3, triangle> = <<0.5, 0.0>, <0.5, 0.5>, <1.0, 0.0>>

generated by the component function, by using as pivot element each vertex of the
input simplex.

We can finally define the operator fractalSimplex, shown in Script 4.5.3. This one
will accept as input parameters the dimension d and the depth n of the fractal simplex
to be generated. Notice that such a function is written in pure FL style, i.e. with neither
recursion nor iteration. Conversely, a sort of stream processing is used here, where to
all simplices generated at each step is applied a sort of black box, i.e. the expand
function, that from each input simplex generates (d + 1) smaller d-simplices suitably
positioned on its interior.

Script 4.5.3
DEF fractalSimplex (d::IsIntPos)(n::IsIntPos) =

(mkpols ∼ splitting ∼ [S1] ∼ UKPOL ∼ SIMPLEX):d
WHERE

mkpols = STRUCT ∼ AA:MKPOL ∼ AA:AL ∼ DISTR ∼ [ID,K:<<1..d+1>,<<1>>>],
splitting = (COMP ∼ #:n):(CAT ∼ AA: expand),
expand = AA:component ∼ DISTR ∼ [INTSTO ∼ LEN, ID]

END;

150 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Figure 4.13 Polyhedral complex generated by fractalSimplex:3:5

4.6 Polyhedral complexes

Polyhedral complexes are very important in the context of geometric programming,
since every object of geometric type in PLaSM is a polyhedral complex, possibly
composed by just one convex cell, and (only implicitly) by all its faces.

Definition A polyhedral complex C is a finite collection of polyhedra of IEn such
that:

1. if P ∈ C, then F(P) ⊆ C;
2. if P, Q ∈ C, then P ∩ Q ∈ F(P) and P ∩ Q ∈ F(Q).

A polyhedral complex C such that every element P ∈ C is a polytope is also called a
polytopal complex. Actually, the geometric data structure used by PLaSM, and named
HPC (Hierarchical Polyhedral Complex), is a finite collection of polytopal complexes,
each of which satisfies the properties 1. and 2. given above.

The dimension dimC of a polytopal complex is the highest dimension of its polytope
elements. Analogously, the dimension of a collection P = {Ci}, made by polytopal
complexes, is their highest dimension.

Polytopal subdivision and triangulation A polytopal subdivision of a set P ⊂
IEn is a polytopal complex C = {Ci} such that:

1. ∪i|Ci| = P ;
2. all the cells Ci ∈ C are polytopes.

A polytopal subdivision T of a set P ⊂ IEn is called a (well-formed) triangulation
when all the cells in T are simplices or, equivalently, T is a simplicial complex.

Example 4.6.1 (Polytopal subdivision)
The primitive constructor MKPOL of geometric objects in PLaSM requires, in order

ELEMENTS OF POLYHEDRAL GEOMETRY 151

to work correctly, that the convex cells define a polytopal subdivision of the linear
polyhedron we want to represent.

Figure 4.14 (a) Linear polyhedron P (b) Non-polytopal subdivision of P

(c) Polytopal subdivision of P

We leave as an exercise for the reader the task of coping with three different
definitions of the complex object, until the three images of Figure 4.14 from the
expression:

(STRUCT ∼ [ID, @1]): complex

are achieved.

Notational warning Through the whole book, we use the notation Pd,n to denote:

the space Pd,n of geometric objects with intrinsic dimension d and
embedding dimension n.

Now we are finally able to give a precise meaning to such expression:

1. “the space Pd,n of geometric objects” is the set of finite collections
of polytopal subdivisions of linear polyhedra;

2. “with intrinsic dimension d” means that, if P ∈ Pd,n, then
P = {Pi} is a collection of polytopal subdivisions Pi such that

d = max{dim(affPi)|Pi ∈ P },

where affPi = aff |Pi|;
3. “and embedding dimension n” means that, if P ∈ Pd,n, then

|P | ⊂ IEn.

For sake of simplicity, we make a further distinction between a (combinatorial)
complex P ∈ Pd,n as a family (of faces) of polytopes, and its (geometric) support
space |P | ⊂ IEn, only in case of need. In both meanings we will normally use the
notation P . The distinction should usually be clear from the context.

Furthermore, in the current implementation of the PLaSM language, the constraint
that each Pi must constitute a polytopal subdivision is actually not enforced.

4.6.1 Schlegel diagrams

Definition The Schlegel diagram of a polytope P ⊂ IEd, with dimP = d, is defined
as the polytopal complex S(P, F, y), of dimension d−1, which is obtained by projecting
P onto a facet F ∈ F(P) from an external point y.

In some sense, the Schlegel diagram S(P) encodes the combinatorial structure of a
d-polytope P into a (d − 1)-complex S(P).

152 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Construction Let us consider a facet F ∈ F(P), and let H+
F be its support

hyperspace, such that P ⊂ H+
F . Let us also consider a point y ∈ H−

F , with its
orthogonal projection within F , i.e. such that π(y) ∈ F .

Let Gy, i.e. the join of face G ∈ F(P) and y, be the pyramid with basis G and
apex y. Then the Schlegel diagram of P from y on F ∈ F(P) is precisely defined as
the polytopal complex:

S(P, F, y) = {Gy ∩ HF |G ∈ F(P)\{F }}.

Implementation The easiest implementation is obtained by projecting the P
polytope from the point (0, . . . , 0, r) ∈ IEd into the coordinate hyperplane {x|xd = 0}.
This choice will require, in most of cases, the preliminary application of some affine
transformation to P to adjust its position and orientation in order to have some F
facet close and parallel to the hyperplane {x|xd = 0}.

Such projection πd : IEd → IEd may be represented in homogeneous coordinates,
using standard graphics techniques (see Foley et al. [FvDFH90], p. 256), as a matrix
M ′

per which differs from the identity (d + 1)× (d + 1) just for the elements of the last
two rows, and such that:

1
1

. . .
0 0 0

1/r 1

x1
...

xd−1

xd

1

=

x1
...

xd−1

0
xd/r

:

x1
(xd/r)

...
xd−1
(xd/r)

0
1

.

Such perspective transformation can be directly applied in PLaSM to a polyhedral
domain by using the primitive operator MAP, as shown in Script 4.6.1, where two
different operators schlegel2D and schlegel3D are given, to generate the diagrams
of 3D and 4D polytopes, respectively. Notice that the center of projection is located
at (0, 0, 0.2) and at (0, 0, 0, 0.2), respectively.

Script 4.6.1 (Schlegel diagrams)
DEF schlegel2D (d::isreal) = MAP:[s1/(s3/K:d), s2/(s3/K:d), K:0];

DEF schlegel3D (d::isreal) =
project:1 ∼ MAP:[s1/(s4/K:d), s2/(s4/K:d), s3/(s4/K:d), K:0];

The three Schlegel diagrams in Figure 4.15, with the 1-skeletons of the 4-simplex
∆4, of the 4-dimensional cube and of the 4-polytope ∆2 × ∆2, are generated by the
three expressions of Script 4.6.2, respectively.

Script 4.6.2 (Schlegel diagrams examples (1))
schlegel3D:0.2: ((@1 ∼ T:<1,2,3,4>:<-1,-1,-1,1> ∼ CUBOID):<2,2,2,2>);

schlegel3D:0.2: ((@1 ∼ T:<1,2,3,4>:<-1/3,-1/3,-1,1>):(SIMPLEX:4));
schlegel3D:0.2: ((@1 ∼ T:<1,2,3,4>:<-1/3,-1/3,-1,1>):(SIMPLEX:2 * SIMPLEX:2))

ELEMENTS OF POLYHEDRAL GEOMETRY 153

Figure 4.15 1-skeletons of Schlegel diagrams: (a) 4-simplex ∆4

(b) 4-dimensional cube (c) 4-polytope ∆2 × ∆2

Figure 4.16 Schlegel diagrams: (a) 3-permutahedron Π3 (b) 1-skeleton of Π4

(c) 4-permutahedron Π4

Analogously, the Schlegel diagrams of the 3- and 4-permutahedron given in
Figure 4.16 are produced by the three expressions of Script 4.6.3.

Script 4.6.3 (Schlegel diagrams examples (2))
(STRUCT ∼ [ID,@1] ∼ schlegel2D):0.2:((@2 ∼ T:3:2.5 ∼ permutahedron):3);
schlegel3D:0.2: ((@1 ∼ T:4:5):(permutahedron:4));
schlegel3D:0.2: ((@2 ∼ T:4:5):(permutahedron:4));

4.7 Nef polyhedra

Nef polyhedra are introduced and shortly discussed in this section. This very general
definition of polyhedra allows representation of a very large class of piecewise-
linear point sets. Nef’s concept of polyhedron appears to meet the needs of solid
modeling surprisingly well: Nef polyhedra can have internal boundaries, they can be
neither closed nor open, as well as non-regular and non-manifold (see Section 13.1.1).
Moreover, a complete and mathematically sound theory is contained in the original
Nef’s work [Nef78]. Such point sets provide a a powerful modeling space for the purpose
of (piecewise-linear) solid modeling and related applications (see Chapter 13). Our
main references for the present section are Bieri [Bie94b, Bie94a] and Ferrucci [Fer95a,
Fer95b].

154 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

A Nef polyhedron can be defined in several equivalent ways. In particular:

Definition A set P ⊆ IEn is a Nef polyhedron if and only if one of the following
properties is satisfied:

1. P is obtainable by a finite number of intersections and complements of open
affine halfspaces;

2. P is generated by any finite number of union, intersection and difference
operations between closed affine subspaces;

3. there exist finitely many relatively closed open sets {Ai} and {Bj} such that
P = ∪iAi and complement P = ∪jBj ;

4. there exists a family {Hk} ⊂ (IEn)∗ of hyperplanes such that P is the union
of the arrangement of IEn generated by {Hk}.

4.7.1 Locally adjoined pyramids

A central concept in Nef polyhedra is that of a pyramid around a point x ∈ IEn, which
is called locally adjoined pyramid to polyhedron P in x, in short l.a. pyramid, and is
denoted as Px. It is defined as a cone with apex in x and directions defined by vectors
internal to some open neighborhood of x in P :

Px := {x + λ(y − x)|y ∈ Nε(x, P), λ > 0},

where Nε(x, P) := {y ∈ P |d(x, y) < ε} is an ε-neighborhood of x in P .

Properties of pyramids Locally adjoined pyramids enjoy several interesting
properties, that translate all topological tests on points and polyhedra, often called
point set membership tests, into a suitable set-theoretical characterization of the
pyramid adjoined to the considered point. In particular:

1. If a point x is in P , then it is also in Px:

x ∈ P =⇒ x ∈ Px

2. The pyramid adjoined to an interior point is the whole space, in the
hypothesis that dimP = n:

x ∈ intP ⇐⇒ Px = IEn

3. Otherwise, if dimP < n, then:

x ∈ relintP ⇐⇒ Px = affP

4. The converse property states that the pyramid adjoined to exterior points is
empty:

x ∈ extP ⇐⇒ Px = ∅

5. Also, the adjoined pyramid is neither empty nor the whole space when the
point is on the boundary:

x ∈ ∂P ⇐⇒ (Px .= ∅) ∧ (Px .= IEn)

ELEMENTS OF POLYHEDRAL GEOMETRY 155

6. Finally, an adjoined pyramid is not empty if and only if the considered point
is either on the boundary or on the interior of P :

x ∈ closP ⇐⇒ Px .= ∅

Example 4.7.1 (Nef polyhedron)
An example of Nef polyhedron is given by the geometric value generated by evaluating
the nef pol symbol in Script 4.7.1. The generated set is shown in Figure 4.17. The
example is aimed to show that a Nef polyhedron may be non-regular, i.e. may be
dimensionsionally unhomogeneous. In particular, it is easy to see that the following
hold:

dim (basis JOIN apex) = 3,
dim (apex JOIN top) = 1,
dim (flag) = 2,

respectively.

Script 4.7.1 (Example of Nef polyhedron)
DEF basis = (T:<1,2>:<-1,-1> ∼ CUBOID):<2,2,1>;

DEF apex = MKPOL:<<<0,0,2>>,<<1>>,<<1>>>;
DEF top = MKPOL:<<<0,0,3>>,<<1>>,<<1>>>;
DEF flag = (T:3:2.5 ∼ R:<2,3>:(PI/2) ∼ EMBED:1 ∼ MKPOL):<

<<0,0>,<0.5,0>,<0.5,0.5>,<0,0.5>,<0.25,0.25>>,
<<1,2,5>,<3,4,5>,<1,4,5>>, <1..3> >;

DEF nef pol = STRUCT:< basis JOIN apex, apex JOIN top, flag >;

Figure 4.17 Example of Nef polyhedron

4.7.2 Faces of Nef polyhedra

The most interesting aspect of Nef polyhedra is probably that they support a definition
of face which is both mathematically sound and intuitively appealing. In particular,

156 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

faces are defined by Nef as equivalence classes of points with the same adjoined
pyramid.

Definition Let P ⊆ IEn be a Nef polyhedron. A face of P is an equivalence class of
the relation ∼, where for every x, y ∈ IEn:

x ∼ y ⇐⇒ Px = Py .

Closure of operations The class of Nef polyhedra is closed under the Boolean
operations of union, intersection, difference and complementation. It is also closed
under the topological operations of interior, boundary and closure. So, Nef polyhedra
define the best class of mathematical models (see Chapter 13) for piecewise-linear solid
modeling, and more in general for geometric objects generated by selecting some not
necessarily regular or connected subset of cells from the arrangement, i.e. the space
partition, generated by an arbitrary set of affine hyperplanes. Their great usefulness
for applications in graphics and modeling has been recognized quite recently, so that
general purpose C++ libraries are yet under development.

Caveat The reader should notice that, whereas it is possible to generate with PLaSM
the quite large class of non-regular and unconnected but closed Nef polyhedra, yet
this class is currently not closed under Boolean set operations. The current PLaSM
implementation of such operations (see Section 14.2) in fact requires the operand
objects being regular and full dimensional. Anyway, both the algorithm and the data
structures used to this purpose may be (hopefully) extended to process the whole class
of Nef polyhedra in arbitrary dimensions, using two basic concepts of solid modeling,
i.e. simplicial complexes and ternary space partitioning trees (extension of BSP-trees
— see Section 13.3.2) like those used by Vaněček [Van91], enriched with a cell selector
function, as suggested by Ferrucci [Fer95a, Fer95b].

4.8 Linear programming

Linear programming methods are extensively used in PLaSM, mainly in the
implementation of dimension-independent Boolean operations, and in the internal
conversions between facet-based and vertex-based representations of polyhedral
complexes. So we give here a brief introduction to such methods. The interested reader
is referred to [Chv83] and [Mur83]. A more abstract approach, devoted to proving the
polynomial time solvability of geometric problems with combinatorial optimization
is [GLS88].

Mathematical programming A mathematical programming problem is formu-
lated as the search for

min{f(x)|x ∈ X}

where X is the set of feasible solutions, and f : X → IR is called objective function.
When X = ∅, the problem is said to be impossible or unfeasible; when the objective
function is inferiorly unlimited, i.e. when min{f(x)|x ∈ X} = −∞, the problem is

ELEMENTS OF POLYHEDRAL GEOMETRY 157

said unbounded. An optimal solution is a point x∗ ∈ X such that f(x∗) ≤ f(x) for
every x ∈ X.

LP problems A mathematical programming problem is called a linear programming
(LP) problem when it is of the form

min{cT x|Ax ≥ b, x ≥ 0}.

The above form of the LP problem, where the feasible set is the intersection of the
convex polyhedron {x|Ax ≥ b} with the cone {x ≥ 0}, is called the general form. The
LP problem can also be given in standard form

min{cT x|Ax = b, x ≥ 0}.

where the feasible set is the intersection of the affine manifold {x|Ax = b} with the
cone {x ≥ 0}, and in particular, is an intersection of half-flats.

Due to the economical interpretations of the LP problems, c and b are called cost
and resource vector, respectively, A is the matrix of (technological) constraints, and
x is the vector of decision variables.

Equivalent formulations Several conversions between equivalent problems can be
given. In particular:

1. from max to min:

maxdT x =⇒ −min cT x

with c = −d;
2. from below (≤) constraints to equality constraints, by introducing slack

variables si:

aix ≤ bi =⇒
{

aix + si = bi

si ≥ 0

3. from above (≥) constraints to equality constraints, by introducing surplus
variables si:

aix ≥ bi =⇒
{

aix − si = bi

si ≥ 0

4. from equality constraints to above (≥) constraints:

aix = bi =⇒
{

aix ≥ bi

−aix ≥ −bi

5. from sign unconstrained variables to sign constrained variables:

xi
≤
> 0 =⇒

xi = x+
i − x−

i

x+
i ≥ 0

x−
i ≥ 0

158 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

4.8.1 Geometry of linear programming

As we know, a (convex) polyhedron is defined as the intersection of finitely many
affine subspaces and hyperplanes. A polytope is a bounded polyhedron. A vertex
of a polyhedron P is a point which cannot be obtained by convex combination of
other points. The fundamental theorem of Minkowski/Weil states that each point of a
polytope can be obtained by convex combination of its vertices. As an easy corollary,
it is possible to show that if the feasible set P is non-empty and inferiorly bounded,
then there exists at least one optimal vertex, where the objective function gets its
minimum value.

Algebraic characterization of vertices Let us suppose A ∈ IRm
n , i.e. that there

are m constraints and n variables, with m < n. So, it is possible to give an arbitrary
value, zero in particular, to n−m unknowns and to solve uniquely for the others, while
at the same time guaranteeing that the solution, called the basic feasible solution, is
a vertex of the feasible polyhedron P .

To characterize algebraically the vertices of P = {x ≥ 0|Ax = b} is quite easy. Let
us consider a collection B of m linearly independent columns of A = (a1, a2, . . . , an),
and suppose, for the sake of simplicity, that

A =
(

B N
)

, B =
(

a1, . . . , am

)

, N =
(

am+1 , . . . , an

)

.

The variables xB associated to B are called basic variables; the others xN are said
non-basic, and let

x =
(

xB

xN

)

=
(

B−1(b − NxN)
xN

)

be a solution of Ax = b. The solution x =
(

xB 0
)T is said to be the basic solution

associated to the B basis. A basic solution is feasible if

xB = B−1b ≥ 0.

By extension, the B basis associated with a basic feasible solution is also called a
feasible basis.

A fundamental theorem states that x is a vertex of the convex polyhedron P :=
{x ≥ 0|Ax = b} if and only if x is a basic feasible solution of Ax = b.

Also, each problem min{cT x|Ax = b, x ≥ 0} with a non-empty and bounded, say
inferiorly limited, feasible set has at least one optimal solution that coincides with a
basic feasible solution.

4.8.2 Simplex method

The well-known simplex method to solve LP problems is due to Dantzig [Dan51,
Dan63]. The simplex method can be geometrically summarized as follows: in a first
phase, a vertex v of the feasible set is chosen; then, in a second phase, the algorithm
moves stepwise to an adjacent vertex w where f(w) is less or equal to the previous
value f(v), and repeats the move until an optimal vertex is reached. The existence of
a decreasing path from each vertex v to the optimal face F0 = {x∗|f(x∗) = z0}, with
z0 = min{cT x|Ax = b, x ≥ 0}, is always guaranteed.

ELEMENTS OF POLYHEDRAL GEOMETRY 159

Tableau-based simplex algorithm The simplex algorithm is the most well known
and practically efficient resolution procedure for linear programs in standard form.

There are several variations of the simplex algorithm [Mur83], to solve efficiently in
practical cases very large-scale LP problems [Nem96], say, problems with hundreds of
thousands, and even millions, variables and equations.

Some of such methods use the so-called simplex tableau, where the data of the
problem are organized into a two-dimensional array, and where the main operation
is the pivot operation, corresponding to Gauss’ elimination of one variable. At each
suitably performed pivot operation, one of the variables leaves the basis, and another
one enters the basis, so moving the current basic feasible solution from the current P
vertex to one of its neighborhoods, until an optimal basic solution is found.

Pivoting operation Let us suppose a matrix A =
(

ai,j

)

∈ IRm
n representing

a linear system of m equation in n variables is given, and let ah,k .= 0. A pivoting
operation on the matrix A, with pivot element of indices (h, k) is aimed at eliminating
the k-th variable from all equations, but not from the h-th one. The effect on the
resulting matrix is the appearance of a unit k-th column, with the 1 element in position
(h, k), and with 0 elsewhere.

For this purpose, rows (i.e. equations) are summated to linear combinations of other
rows, so that the solutions of the system do not change. In particular, the h-th row
is divided for the pivot element ah,k, supposed non-zero, while the other rows, for
example the i-th, are subtracted by the new h-th row times the element on the i-th
position of the pivot column. More formally, let denote as A′ =

(

a′
i,j

)

=
(

a′
i

)

the
resulting matrix after pivoting on the (h, k) element. Then we have:

a′
h :=

1
ah,k

ah, (4.2)

a′
i := ai − ai,ka′

h, i .= h (4.3)

Example 4.8.1 (Pivoting operation)
Looking carefully at equations (4.2–4.3), it is easy to see that the result A′ of the
pivot operation about the element (h, k) on the matrix A ∈ IRm

n can be obtained as

A′ = P (h, k)A

where the matrix P (h, k) ∈ IRm
m differs from the identity m × m only on the h-th

column:

P (h, k) =

1 − a1,k

ah,k

1 − a2,k

ah,k

. . .
...
1

ah,k

...
. . .

−am,k

ah,k
1

160 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

The pivoting matrix can be generated in PLaSM by using the Pivot function given
in Script 4.8.1. The body of the function just substitutes the updated column to the
h-th column of the identity m × m. The function IDNT used to generate the identity
matrix is given in Script 3.3.5. The scalarVectProd operator, to execute a product
of a scalar times a vector, is given in Script 2.1.20. Notice that the update function
updates the n-th element of the seq sequence with the new value x, of any type. To
understand the Pivot code, the reader should remember that a matrix in PLaSM is
represented as a sequence of rows.

Script 4.8.1 (Pivot matrix)
DEF update (n::IsIntPos)(seq::IsSeq)(x::TT) = CAT:<

(CONS ∼ AA:SEL):(1..n - 1):seq,
< x >,
(CONS ∼ AA:SEL):(n + 1..LEN:seq):seq

>;

DEF Pivot (h,k::IsIntPos) (mat:: IsMat) =
(TRANS ∼ update:h:(IDNT:m)): updated column

WHERE
pivot column = SEL:k: (TRANS:mat),
pivot element = SEL:h: pivot column,
m = LEN:mat,
updated column = (-1/pivot element) scalarVectProd update:h:pivot column:-1

END;

Notice that when computing A′ = P (h, k)A, the matrix A is not necessarily
squared, whereas the pivot matrix P (h, k) is squared. Two examples of the operator

Pivot : (Z+ × Z+) → (IRm
n → IRm

m)

are given in Scripts 4.8.2 and 4.8.3.

Script 4.8.2 (Pivot matrix)
Pivot:<2,5>:

< < 11 , -12 , 13 , 14 , 15 , 16 > ,
< 21 , 22 , -23 , 24 , 25 , 26 > ,
< 31 , 32 , 33 , -34 , 35 , 36 > ,
< 41 , 42 , 43 , 44 , -45 , 46 > >

≡
< < 1 , -3/5 , 0 , 0 > ,
< 0 , 1/25 , 0 , 0 > ,
< 0 , -7/5 , 1 , 0 > ,
< 0 , 9/5 , 0 , 1 > >

The effect of a double pivoting on an input matrix is shown in Script 4.8.3. Notice
that an infix expression like (Pivot:<2,5> * ID) returns a function, which can be
compound with other similar functions.

ELEMENTS OF POLYHEDRAL GEOMETRY 161

Script 4.8.3 (Pivoting example)
((Pivot:<3,1> * ID) ∼ (Pivot:<2,5> * ID)):

< < 11 , -12 , 13 , 14 , 15 , 16 > ,
< 21 , 22 , -23 , 24 , 25 , 26 > ,
< 31 , 32 , 33 , -34 , 35 , 36 > ,
< 41 , 42 , 43 , 44 , -45 , 46 > >

≡
< < 0 , -24 , 92 , -68 , 0 , 0 > ,
< 0 , 1/4 , -703/20 , 729/20 , 1 , 5/4 > ,
< 1 , 3/4 , 163/4 , -169/4 , 0 , -1/4 > ,
< 0 , 45/2 , -6419/2 , 6833/2 , 0 , 225/2 > >

4.8.3 Some polyhedral algorithms

Two algorithmic problems are of major interest when using decompositions with d-
dimensional polytopes, namely the vertex enumeration and the facet enumeration
problem. We just address here the main coordinates of such problems. For a deep
review and a wide survey of the field the interested reader is referred to Avis, Bremner
and Seidel’s article entitled “How good are convex hull algorithms?” [ABS97].

Beneath/Beyond method

The convex hull of a finite set of points in IEn, for arbitrary positive integer n,
can be computed by using Seidel’s “Beneath Beyond” method [Sei81], described by
Edelsbrunner in [Ede87]. This method is a well-known, simple and efficient algorithm
implemented by several geometric codes. It is also used by the PLaSM geometric kernel
in the implementation of the the basic primitive MKPOL.

In an initialization step of the algorithm the input points are sorted
lexicographically. Then the convex hull is incrementally built, starting from the empty
set and adding a sorted point at a time. In doing so, a distinction is made between the
cases where the affine hull of the previous points either contains or does not contain
the added point.

The second case is much easier: the updated convex hull is a pyramid having the
previous convex hull as the basis and the new point as the apex. All the faces of a
pyramid are easily obtained by the join of the apex to all faces of the basis. The highest
dimensional face is obtained by the join of the apex to the basis.

The second case, requiring a non-pyramidal update, is quite more complex. A
detailed description can be found in Edelsbrunner [Ede87] and in Preparata and
Shamos [PS85].

Vertex enumeration problem

Given a polytope P , represented as an intersection of halfspaces H(P) = P (A, b) =
{x ∈ IEn|Ax ≤ b}, the generation of its representation as the convex hull of its
vertices V(P), is called the vertex enumeration problem. Several solution algorithms
exist for this problem, that can still be considered a research problem in computational
geometry.

162 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

The solution algorithms can be classified as pivotal methods and progressive
methods. The first class makes use of the pivot operation as the basic operation
to move from one vertex to one of the vertices adjacent to it. Unfortunately, it is
not possible to consider each vertex only one time. This is possible only if the graph
associated with the polyhedron has a Hamiltonian cycle, and this is in general not
true. Such algorithms may either pass more than one time on each vertex or visit
points which are external to the polyhedron.

We discuss here both a basic trivial method and the solution currently implemented
in PLaSM.

Trivial approach The easiest way of solving the vertex enumeration problem
consists in:

1. considering each n-tuple of boundary hyperplanes Hai,bi = {x ∈ IEn|aT
i x =

bi};
2. solving their squared system for the common point, say y;
3. checking for feasibility, i.e. if y ∈ P (A, b). In other words, it is necessary to

verify if Ay ≤ b. Clearly, this is true if and only if y is a vertex of P .

Let us suppose A ∈ IRm
n , i.e. that there are m inequalities in H(P), with m ≥ n.

This method requires the solution of a number
(m

n

)

of n×n systems of linear equations.
A further computational cost is given by the feasibility check Ay ≤ b for each solution
y. Such method may be acceptable only for very small values of both m and n.

Example 4.8.2 (Vertex enumeration)
It is easy to see that the trivial generation of vertices of 3D tetrahedron would require
(4
3

)

= 4 resolutions of 3×3 systems of linear equations, i.e. one for each vertex, because
each triplet of face hyperplanes generates a vertex.

The vertex enumeration of the 3D cube would require solving
(6
3

)

= 20 linear
systems, and only 8 solutions would actually pass the feasibility test.

Conversely, the same operation for the 3D icosahedron (see Section 23) would require
the resolution of

(20
3

)

= 1140 linear systems of dimension 3 × 3. In this case only 12
solutions would be accepted as icosahedron vertices.

Pivoting algorithms One of best known pivoting methods, named after its authors
M. Manas and J. Nedoma [MN68], starts from the simplex tableau in canonical form,
which gives the first vertex of the polyhedron, and explores the set of adjacent bases
associated to basic feasible solutions, thus constructing a covering tree of the graph
described below, until the set of all vertices has been built.

Let P = {x ≥ 0|Ax = b} be in standard form. A graph G = (N, A) with nodes
corresponding to m-tuples of indices associated to feasible bases, and arcs between
nodes which differ in just one component, can be built incrementally moving from each
vertex to its adjacent vertices. Visiting a node corresponds to computing the Cartesian
coordinates of the polyhedron vertex associated with a basic feasible solution of the
LP problem. The algorithm is initialized by putting the simplex tableau in canonical
form, thus achieving an initial node of the graph and a first polyhedron vertex.

David Avis’s lrslib is a self-contained ANSI C implementation of the reverse search
algorithm [AF92] for vertex enumeration/convex hull problems. A more efficient

ELEMENTS OF POLYHEDRAL GEOMETRY 163

method of finding all the vertices of a polytope without using any slack/surplus
variables is given in Arsham [Ars97].

Progressive algorithms More recent and efficient algorithms make direct use of the
polyhedron description as a set of inequalities, thus avoiding increasing the number of
problem variables, and compute the set of vertices by repeatedly adding one inequality.
Such algorithms often start from the simplex generated from the first n inequalities,
then update the current set of vertices by suitable comparisons to the boundary
hyperplane associated to the added inequality. New vertices must obviously be added
when such a new hyperplane cuts the current polyhedral set. A combined solution
of both enumeration problems (say, of vertices and facets enumeration) is given by
Bremner, Fukuda and Marzetta in [BFM98].

4.9 Examples

From the very first development of Greek geometry, some interesting solids intrigued
the mathematicians because of the extreme perfection of their definition. In particular,
five polyhedra, bounded by regular polygons which are all equal to each other, and
are joined by equal internal angles, are cited in Plato’s work Timaeus, so that they
are collectively known as Platonic solids. The construction of Platonic solids is the
last topic in Euclid’s Elements of geometry book. We present in this section a
straightforward PLaSM modeling of the five Platonic solids.

4.9.1 Platonic solids

We discuss here the construction of tetrahedron, hexahedron, octahedron, dodecahedron
and icosahedron, all inscribed in a sphere of unit radius, following the lines
developed in the second chapter of the beautiful and inspiring book Polyhedra by
P. Cromwell [Cro97]. Such solids are illustrated in Figure 4.18.2

Tetrahedron

The tetrahedron as a polytope, bounded by four triangle faces and having six edges
and four vertices, is well known to our reader. Tetrahedra are commonly produced in
PLaSM by the SIMPLEX primitive applied to the integer 3, and are generated as the
convex hull of the set {o, e1, e2, e3}. Such unit 3-simplex lacks the symmetries that
the Platonic tetrahedron enjoys, and cannot be inscribed in the unit sphere.

Hence, the generation method of tetrahedron given in Script 4.9.1 closely resembles
its construction in the Euclid’s Elements, as reported by Cromwell [Cro97]. In
particular, the solid is produced by the JOIN of the equilateral triangle of the basis,
inscribed in the unit circle centered at the origin, with the apex vertex located
perpendicularly along the z axis, at a distance 4

3 from the origin. The ngon function,
used to generate regular polygons with any number of sides, is given in Script 4.4.2.

2 The quality of images is quite poor, because they were produced by using a standard web
browser, and not by using a raytracer.

164 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Figure 4.18 Tetrahedron, hexahedron, octahedron, dodecahedron and icosahedron

inscribed in a unit sphere

In order to inscribe the generated polyhedron in the unit sphere we need to move
it in the reverse z direction, with translation vector (0, 0,−1

3). The same effect is
obtained by translating the basis, and joining it to the set conv {e3} ∈ P0,3. The
function MK : IEd → P0,d, with d arbitrary positive integer, was given in Script 3.3.15.

Script 4.9.1 (Tetrahedron)
DEF tetrahedron = (T:3:(-1/3) ∼ EMBED:1 ∼ ngon):3 JOIN MK:<0,0,1> ;

Hexahedron

The cube — bounded by six planes and hence called also a hexahedron — is generated,
in Script 4.9.2, with center in the origin and inscribed in the unit sphere. Such an
inscribed cube has edges of length a = 2/

√
3, as the reader may check by considering

the great diagonal of the cube as the hypotenuse of a right-angled triangle whose
cathetuses have lengths a and a

√
2, respectively.

Script 4.9.2 (Hexahedron)
DEF hexahedron = (T:<1,2,3>:< a/-2,a/-2,a/-2 > ∼ CUBOID):< a,a,a >

WHERE a = 2 / sqrt:3 END;

ELEMENTS OF POLYHEDRAL GEOMETRY 165

Octahedron

The Platonic solid named octahedron, which is bounded by 8 triangular faces organized
as a double squared pyramid, is simply the three-dimensional CrossPolytope defined
in Section 4.4.1 as the set conv {ei,−ei}, 1 ≤ i ≤ 3. The implementation given in
Script 4.9.3 is consequently simple.

Script 4.9.3 (Octahedron)
DEF octahedron = CrossPolytope:3;

Dodecahedron

The Platonic solid bounded by 12 pentagons is called dodecahedron. As suggested
by [Cro97], this one can be constructed by glueing a properly defined “roof” to each
face of a central cube, as shown by Figure 4.19a. A first roof is given by the convex
set

R := conv (B ∪ T)

i.e. as the convex hull of the embedded 2D basis interval B := [0, 1]2 × {0}, join
the embedded 1D top segment T := conv {p1, p2}, with p1 = (1 − g, 1, g) and
p2 = (1+g, 1, g), respectively, where g is the golden ratio. The other roofs are defined
by properly translating and rotating R.

Golden ratio The golden ratio is defined as the ratio between the length g of the
interval [0, g] ⊂ [0, 1], and the unit length of the [0, 1] segment. The g value must
equate by definition the ratio between the length 1 − g of the [g, 1] segment and g
itself. In other words, g must satisfy the constraint:

g : 1 = (1 − g) : g.

It is very easy to see, by getting the positive root of equation g2 + g − 1 = 0, that
g = 1

2(
√

5 − 1).

Implementation The dodecahedron inscribed in the unit sphere is implemented in
Script 4.9.4 by using the method described above. For sake of simplicity the primary
construction is done using a central cube with edge length equal to 2. The assembled
polytope generated by STRUCT is then properly scaled by a factor 1/

√
3, so reducing

the half-diagonal of the interior cube to the unit size of the inscribing sphere. The
resulting solid is shown in Figure 4.19b.

The geometric value obtained when evaluating the last expression of Script 4.9.4 is
displayed in Figure 4.19a. The SPLIT and explode operators, to extract the convex
3-cells of the dodecahedron complex and to produce a (controlled) “explosion” of cells
about the origin, are given in Scripts 10.8.4 and 10.8.6, respectively.

To fully understand the STRUCT semantics and the implicit composition of sequences
of affine transformations, some preliminary reading of Chapters 6 and 8 may be very
useful.

166 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Script 4.9.4 (Dodecahedron)
DEF dodecahedron = (S:<1,2,3>:< a,a,a > ∼ STRUCT):<

T:<1,2,3>:< -1,-1,-1 >:(CUBOID:<2,2,2>),
roofpair, R:<1,3>:(PI/2), R:<1,2>:(PI/2), roofpair ,
R:<1,2>:(PI/2), R:<2,3>:(PI/2), roofpair >

WHERE
g = (SQRT:5 - 1)/2,
top = MKPOL:< <<1-g,1,0-g>,<1+g,1,0-g>>, <<1,2>>, <<1>> >,
basis = (EMBED:1 ∼ CUBOID):<2,2>,
roof = (T:<1,2,3>:< -1,-1,-1 > ∼ JOIN):< basis, top >,
roofpair = STRUCT:< roof, R:<2,3>:PI, roof >,
a = 1 / sqrt:3

END;

(STRUCT ∼ explode:<1.1,1.1,1.1> ∼ SPLIT): dodecahedron

In order to obtain a more compact VRML output for the dodecahedron value, it
might be preferable to insert a pair MKPOL ∼ UKPOL on the top of the function body. As
the reader already knows, this operator insertion flattens the hierarchy of the internal
geometry representation, thus reducing the file size of deep hierarchical assemblies,
and may eliminate some awkward rendering effects introduced by scaling with negative
coefficients, which are formally not allowed by the VRML specification [ISO97].

Figure 4.19 (a) Exploded dodecahedron (b) Dodecahedron

Icosahedron

The icosahedron is the Platonic solid bounded by 20 equilateral triangles. Its boundary
can be seen as composed by threes layers, as shown by Figure 4.20c. The intermediate
layer is produced by joining two parallel pentagons mutually rotated by π radians.
Since each of their 5 + 5 sides is joined to one vertex in the opposite pentagon, this
layer contains 10 triangles. Also, 5 triangles are contained in the top layer and 5 in
the bottom layer.

Implementation According to [Cro97], the solid is generated in Script 4.9.5 as
the convex hull of three orthogonal rectangles whose sides are in the golden ratio
each other. Such a convex hull is finally scaled to be inscribed in the unit circle. The

ELEMENTS OF POLYHEDRAL GEOMETRY 167

scaling coefficient b simply transforms the half-diagonal of such “golden rectangles”
to the unit radius of the inscribing sphere.

Script 4.9.5 (Icosahedron)
DEF icosahedron = (S:<1,2,3>:<b,b,b> ∼ JOIN):< rectx, recty, rectz >

WHERE
rectx = (EMBED:1 ∼ T:<1,2>:<-:g,-1> ∼ CUBOID): < 2*g, 2>,
recty = (R:<1,3>:(PI/2) ∼ R:<1,2>:(PI/2)): rectx,
rectz = (R:<2,3>:(PI/2) ∼ R:<1,2>:(PI/2)): rectx,
g = (SQRT:5 - 1)/2,
b = 2 / sqrt:(10 - 2*sqrt:5)

END;

Example 4.9.1 (Icosahedron constructions)
The icosahedron images shown in Figures 4.9.5a and 4.9.5b are generated by evaluating
the out1 and out2 symbols given in Script 4.9.6. In particular, the definition of the
planes assembly is obtained from the icosahedron definition by just substituting the
operator STRUCT to JOIN in the function body. Notice that the COLORS.psm package
must be loaded into memory before evaluating the out1 symbol.

Figure 4.9.5b of the layered icosahedron structure is generated as value of the out2
object. In this case (a) the solid is rotated by π/2 about the (−1, 1−

√
5

2 , 0) axis in
order to move the diagonal of the rectangle located in the z = 0 plane to coincide
with the z-axis; (b) the 2-skeleton is extracted; (c) the resulting complex is split into
a sequence of convex cells; (d) this sequence is “exploded” along the z direction, and
finally (e) a single polyhedral assembly is generated.

Script 4.9.6 (Icosahedron)
DEF out1 = STRUCT:<

icosahedron MATERIAL
Transparentmaterial:< RGBCOLOR:<0.3, 0.7, 0.9>, 0.6>,

planes COLOR red >;

DEF out2 = (STRUCT ∼ explode:<1,1,1.3> ∼ SPLIT ∼ @2
∼ Rot n:< PI/2, <-1, (1-SQRT:5)/2, 0> >): icosahedron;

Notice that the function Rot n for 3D rotation about an axis for the origin can be
loaded from VECTORS.psm package, whereas the explode and SPLIT functions came
from Scripts 10.8.6 and 10.8.4, respectively.

Example 4.9.2 (Platonic solids in a unit sphere)
The five pictures given in Figure 4.18 are generated from models defined in Script 4.9.7,
where each of outi objects correspond in order to Platonic solids inscribed in a
transparent unit sphere centered in the origin of the IE3 space. The Sphere generating
function is given in Section 2.2.7. Notice that in order to generate colored or shaded or
transparent objects, the PLaSM package named COLORS.psm must be loaded in memory

168 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Figure 4.20 (a) Icosahedron (b) Generation of icosahedron as JOIN of three

orthogonal rectangles with sides in the golden ratio (c) Layered structure of

icosahedron

in advance. A quite detailed discussion of color and material properties, both in PLaSM
and in VRML, may be found in the second part of Chapter 10.

Script 4.9.7 (Platonic solids in a transparent sphere)
DEF red = RGBCOLOR:< 1, 0, 0 >;

DEF white = RGBCOLOR:< 1, 1, 1 >;
DEF mymaterial = white Transparentmaterial 0.9;
DEF UnitSphere = Sphere:1:<18,24> CREASE (PI/2) MATERIAL mymaterial;

DEF out1 = STRUCT:< UnitSphere, tetrahedron COLOR red >;
DEF out2 = STRUCT:< UnitSphere, hexahedron COLOR red >;
DEF out3 = STRUCT:< UnitSphere, octahedron COLOR red >;
DEF out4 = STRUCT:< UnitSphere, dodecahedron COLOR red >;
DEF out5 = STRUCT:< UnitSphere, icosahedron COLOR red >;

4.10 References

The reader interested to some in-depth study of polyhedral geometry topics we
introduced in this chapter, is referred to the following list of papers or books:

[Bal61, Bie95, Bie98, Bie94a, Bie94b, BN88, Bro83, Bro88, Bur74, CHJ90, Che65,
Chv83, Cro97, Dan63, DP77a, DP77b, Dye83, Ede87, Fer95a, Fer95a, Gib77, GT87,
Grü67, GS85, GW89, Hop83, BF89, Lef49, Lue84, LW69, MN68, MR77, MR80,
Mun84, Mur83, Nak91, Nef78, PS85, Req77, RS72, RS89, Sch93, Sch86, Sob89, Sug93,
Von81, Wen71, Yao90, Zie95]

