
Parallel and Distributed Computing

Alberto Paoluzzi – Lecture 08 Parallel programming in Julia

Wed 23-03-2022

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 1 / 33

1 Parallel programming

2 Asynchronous programming (concurrent-computing)

3 Multithreading

4 Distributed computing

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 2 / 33

Parallel programming

Section 1

Parallel programming

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 3 / 33

Parallel programming

Parallel programming

Julia provides flexibility in in parallel programming, with solutions for

asynchronous computing,

multithreading,
distributed computing

and also for

GPU computing.

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 4 / 33

Parallel programming

Parallel programming

Julia provides flexibility in in parallel programming, with solutions for

asynchronous computing,
multithreading,

distributed computing

and also for

GPU computing.

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 4 / 33

Parallel programming

Parallel programming

Julia provides flexibility in in parallel programming, with solutions for

asynchronous computing,
multithreading,
distributed computing

and also for

GPU computing.

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 4 / 33

Parallel programming

Parallel programming

Julia provides flexibility in in parallel programming, with solutions for

asynchronous computing,
multithreading,
distributed computing

and also for

GPU computing.

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 4 / 33

Parallel programming

Parallel programming

Julia provides flexibility in in parallel programming, with solutions for

asynchronous computing,
multithreading,
distributed computing

and also for

GPU computing.

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 4 / 33

Parallel programming

Asynchronous programming:

A programming paradigm where parts of code are broken into small
independent and parallel tasks.

The tasks can be synchronized on specific conditions and can communicate
over channels.

synchronous operations
In tasks are performed one at a time and only when one is completed, the
following is unblocked.
In other words, you need to wait for a task to finish to move to the next one.

asynchronous operations
on the other hand, you can move to another task before the previous one
finishes

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 5 / 33

Parallel programming

Asynchronous programming:

A programming paradigm where parts of code are broken into small
independent and parallel tasks.

The tasks can be synchronized on specific conditions and can communicate
over channels.

synchronous operations
In tasks are performed one at a time and only when one is completed, the
following is unblocked.
In other words, you need to wait for a task to finish to move to the next one.

asynchronous operations
on the other hand, you can move to another task before the previous one
finishes

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 5 / 33

Parallel programming

Asynchronous programming example

When a program needs to interact with the outside world, for example
communicating with another machine over the internet, operations in the
program may need to happen in an unpredictable order.

Say your program needs to download a file.

We would like to initiate the download operation, perform other
operations while we wait for it to complete, and then resume the code
that needs the downloaded file when it is available.

This sort of scenario falls in the domain of asynchronous programming,
sometimes also referred to as concurrent programming (since,
conceptually, multiple things are happening at once).

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 6 / 33

Parallel programming

Asynchronous programming example

When a program needs to interact with the outside world, for example
communicating with another machine over the internet, operations in the
program may need to happen in an unpredictable order.

Say your program needs to download a file.

We would like to initiate the download operation, perform other
operations while we wait for it to complete, and then resume the code
that needs the downloaded file when it is available.

This sort of scenario falls in the domain of asynchronous programming,
sometimes also referred to as concurrent programming (since,
conceptually, multiple things are happening at once).

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 6 / 33

Parallel programming

Asynchronous programming example

When a program needs to interact with the outside world, for example
communicating with another machine over the internet, operations in the
program may need to happen in an unpredictable order.

Say your program needs to download a file.

We would like to initiate the download operation, perform other
operations while we wait for it to complete, and then resume the code
that needs the downloaded file when it is available.

This sort of scenario falls in the domain of asynchronous programming,
sometimes also referred to as concurrent programming (since,
conceptually, multiple things are happening at once).

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 6 / 33

Parallel programming

Asynchronous programming: (concurrent-computing)
To address these scenarios, Julia provides Tasks (also known by several other
names, such as symmetric coroutines, lightweight threads, cooperative multitasking,
or one-shot continuations).

When a piece of computing work (in practice, executing a particular function) is
designated as a Task, it becomes possible to interrupt it by switching to another
Task.

The original Task can later be resumed, at which point it will pick up right where it
left off.

This may seem similar to a function call. However there are two key differences:

1 switching tasks does not use any space, so any number of task switches can
occur without consuming the call stack.

2 switching among tasks can occur in any order, unlike function calls, where the
called function must finish executing before control returns to the calling
function.

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 7 / 33

Parallel programming

Asynchronous programming: (concurrent-computing)
To address these scenarios, Julia provides Tasks (also known by several other
names, such as symmetric coroutines, lightweight threads, cooperative multitasking,
or one-shot continuations).

When a piece of computing work (in practice, executing a particular function) is
designated as a Task, it becomes possible to interrupt it by switching to another
Task.

The original Task can later be resumed, at which point it will pick up right where it
left off.

This may seem similar to a function call. However there are two key differences:

1 switching tasks does not use any space, so any number of task switches can
occur without consuming the call stack.

2 switching among tasks can occur in any order, unlike function calls, where the
called function must finish executing before control returns to the calling
function.

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 7 / 33

Parallel programming

Multithreading: (multi-processing)

Julia by default runs as a single-threaded application.

However, it can be made to run with a number of threads where the
operating system supports it.

(multiple cores)

Julia provides APis where applications can take advantage from such
threads available to them.

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 8 / 33

Parallel programming

Distributed computing:

Goes beyond the realm of a single process.

Two independent processes that cannot normally share any resources among
themselves can communicate over a message passing interface designed
specifically for Julia.

Packages like MPI.jl.

see https://juliaparallel.github.io/MPI.jl/stable/

Julia supports industry standard MPI protocols as well.

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 9 / 33

https://juliaparallel.github.io/MPI.jl/stable/

Asynchronous programming (concurrent-computing)

Section 2

Asynchronous programming (concurrent-computing)

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 10 / 33

Asynchronous programming (concurrent-computing)

Asynchronous programming (concurrent-computing)

Figura 1: Some examplesAlberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 11 / 33

Asynchronous programming (concurrent-computing)

Tasks:

Julia’s asynchronous programming model can be understood from the
preceding figure:

1 A new task created is added to the scheduler’s runnable task queue by
the schedule method.

2 When a task is executing it can call yield and relinquish the control
to the scheduler to schedule the next runnable task.

3 A task can wait on a condition and move to the condition’s wait queue.
4 When the condition is met, notify can be called on the condition and

that will move a11 the tasks assigned to the condition to the runnable
queue of the scheduler.

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 12 / 33

Asynchronous programming (concurrent-computing)

Tasks:

Julia’s asynchronous programming model can be understood from the
preceding figure:

1 A new task created is added to the scheduler’s runnable task queue by
the schedule method.

2 When a task is executing it can call yield and relinquish the control
to the scheduler to schedule the next runnable task.

3 A task can wait on a condition and move to the condition’s wait queue.
4 When the condition is met, notify can be called on the condition and

that will move a11 the tasks assigned to the condition to the runnable
queue of the scheduler.

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 12 / 33

Asynchronous programming (concurrent-computing)

Tasks:

Julia’s asynchronous programming model can be understood from the
preceding figure:

1 A new task created is added to the scheduler’s runnable task queue by
the schedule method.

2 When a task is executing it can call yield and relinquish the control
to the scheduler to schedule the next runnable task.

3 A task can wait on a condition and move to the condition’s wait queue.

4 When the condition is met, notify can be called on the condition and
that will move a11 the tasks assigned to the condition to the runnable
queue of the scheduler.

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 12 / 33

Asynchronous programming (concurrent-computing)

Tasks:

Julia’s asynchronous programming model can be understood from the
preceding figure:

1 A new task created is added to the scheduler’s runnable task queue by
the schedule method.

2 When a task is executing it can call yield and relinquish the control
to the scheduler to schedule the next runnable task.

3 A task can wait on a condition and move to the condition’s wait queue.
4 When the condition is met, notify can be called on the condition and

that will move a11 the tasks assigned to the condition to the runnable
queue of the scheduler.

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 12 / 33

Asynchronous programming (concurrent-computing)

Tasks are not functions

They can be switched easily as there is no need to recreate a stack frames
as is needed to be carried out for functions.

How the scheduler decides on the task to pick up is dependent on the
architecture of the Julia runtime.

For example, a scheduler with the availability of multiple thread execution
may be able to pick up multiple tasks for execution.

Similarly, the condition is another system dependent entity.

For example, the condition can be a file being locked, a device being busy
or a channel being full or empty.

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 13 / 33

Asynchronous programming (concurrent-computing)

Tasks:
A Task object can be constructed by passing a function with no parameters
as a parameter to its constructor.

The Task object thus created has not run yet and will be put on the
scheduler queue when the schedule function is called on it.

julia> t = Task() do
sleep(10)
println("done")

end

julia> schedule(t)

The prompt returns immediately on the call schedule(t) as the call only
places the task on the queue. The println is carried out after 10s.

julia> t = Task() do
sleep(l0)
println("done")

end

julia> schedule(t); wait(t)

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 14 / 33

Asynchronous programming (concurrent-computing)

Tasks:

A call to wait will ensure the execution shall wait till the task is completed.

@task x is a common way to take any arbitrary code and make a Task
object out of it by Task(()->x).

t = @task begin
sleep(10)
println("done")

end

An asynchronous task is one where a Task is followed by a call to
schedule() and often represented by macro @async.

If a wait is called on the task then the call would wait for the task to
complete. Such system will be called a synchronous task.

A macro @sync can address such a need.

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 15 / 33

Asynchronous programming (concurrent-computing)

Channels 1/3

Channels are shared memory queues that can help design producer and
consmner kinds of data interchange between tasks.

A channel can have a fixed number of data elements of a specific type or of
type Any if no specific type is specified.

julia> c = Channel(8)
Channel{Any}(8) (empty)

You can also create a channel with a specific type of data in the queue like
an Int.

julia> c = Channel{Int}(8)
Channel{Int64}(8) (empty)

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 16 / 33

Asynchronous programming (concurrent-computing)

Channels 2/3
Let us use an asynchronous producer to write to the channel.

@async begin
for i = 1:6

println("Adding $i to channel")
put!(c, i)

end
end

An asynchronous consumer reads from channel as well.

@async begin
for i = 1:6

v = take!(c)
println("Removing value: $v")

end
end

The results are printed in spurts, and as soon as the channel is filled up the
producer waits.

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 17 / 33

Asynchronous programming (concurrent-computing)

Channels 3/3
Similarly, as soon as the channel gets emptied the consumer waits.

Adding 1 to channel
Adding 2 to channel
Adding 3 to channel
Adding 4 to channel
Removing value: 1
Removing value: 2
Removing value: 3
Removing value: 4
Adding 5 to channel
Adding 6 to channel
Removing value: 5
Removing value: 6

Finally, channels can be closed with a close call.

Once the channel is closed, no further communication can take place trough them.
Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 18 / 33

Asynchronous programming (concurrent-computing)

Generators & iterators in Python

Python generators are a simple way of creating iterators.

Simply speaking, a generator is a function that returns an object (iterator)
which we can iterate over (one value at a time).

Iterators are the objects that use the next() method to get the next
value of the sequence.

A generator is a function that produces or yields a sequence of values
using a yield statement.

Classes are used to implement the iterators

https://www.codingninjas.com/blog/2021/09/06/iterators-and-generators-
in-python/

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 19 / 33

https://www.codingninjas.com/blog/2021/09/06/iterators-and-generators-in-python/
https://www.codingninjas.com/blog/2021/09/06/iterators-and-generators-in-python/

Asynchronous programming (concurrent-computing)

Generators & iterators in Python

Python generators are a simple way of creating iterators.

Simply speaking, a generator is a function that returns an object (iterator)
which we can iterate over (one value at a time).

Iterators are the objects that use the next() method to get the next
value of the sequence.

A generator is a function that produces or yields a sequence of values
using a yield statement.

Classes are used to implement the iterators

https://www.codingninjas.com/blog/2021/09/06/iterators-and-generators-
in-python/

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 19 / 33

https://www.codingninjas.com/blog/2021/09/06/iterators-and-generators-in-python/
https://www.codingninjas.com/blog/2021/09/06/iterators-and-generators-in-python/

Asynchronous programming (concurrent-computing)

Generators & iterators in Python

Python generators are a simple way of creating iterators.

Simply speaking, a generator is a function that returns an object (iterator)
which we can iterate over (one value at a time).

Iterators are the objects that use the next() method to get the next
value of the sequence.

A generator is a function that produces or yields a sequence of values
using a yield statement.

Classes are used to implement the iterators

https://www.codingninjas.com/blog/2021/09/06/iterators-and-generators-
in-python/

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 19 / 33

https://www.codingninjas.com/blog/2021/09/06/iterators-and-generators-in-python/
https://www.codingninjas.com/blog/2021/09/06/iterators-and-generators-in-python/

Asynchronous programming (concurrent-computing)

Generators & iterators in Python

Python generators are a simple way of creating iterators.

Simply speaking, a generator is a function that returns an object (iterator)
which we can iterate over (one value at a time).

Iterators are the objects that use the next() method to get the next
value of the sequence.

A generator is a function that produces or yields a sequence of values
using a yield statement.

Classes are used to implement the iterators

https://www.codingninjas.com/blog/2021/09/06/iterators-and-generators-
in-python/

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 19 / 33

https://www.codingninjas.com/blog/2021/09/06/iterators-and-generators-in-python/
https://www.codingninjas.com/blog/2021/09/06/iterators-and-generators-in-python/

Asynchronous programming (concurrent-computing)

Julia generators & iterators using tasks and channels

Amazing web article (blog)

generators-and-iterators-in-julia-and-python

Julia’s Iteration utilities
Dalla documentazione ufficiale:
https://docs.julialang.org/en/v1/base/iterators/

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 20 / 33

https://erik-engheim.medium.com/generators-and-iterators-in-julia-and-python-6c9ace18fa93
https://docs.julialang.org/en/v1/base/iterators/

Asynchronous programming (concurrent-computing)

Julia generators & iterators using tasks and channels

Amazing web article (blog)

generators-and-iterators-in-julia-and-python

Julia’s Iteration utilities
Dalla documentazione ufficiale:
https://docs.julialang.org/en/v1/base/iterators/

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 20 / 33

https://erik-engheim.medium.com/generators-and-iterators-in-julia-and-python-6c9ace18fa93
https://docs.julialang.org/en/v1/base/iterators/

Asynchronous programming (concurrent-computing)

Locks

Locks are synchronization objects used to synchronize tasks.

If a resource can be accessed by more than one task, it may be best managed
under a lock to avoid the state be modified when they are being accessed.

The basic premise of a lock is a condition. When the condition is notified then the
tasks waiting on it are released.

Typical lock code looks like the following:

lock(c)
try

while !condition_to_wait
wait(c)

end
finally

unlock(c)
end

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 21 / 33

Asynchronous programming (concurrent-computing)

Locks

Locks are synchronization objects used to synchronize tasks.

If a resource can be accessed by more than one task, it may be best managed
under a lock to avoid the state be modified when they are being accessed.

The basic premise of a lock is a condition. When the condition is notified then the
tasks waiting on it are released.

Typical lock code looks like the following:

lock(c)
try

while !condition_to_wait
wait(c)

end
finally

unlock(c)
end

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 21 / 33

Asynchronous programming (concurrent-computing)

Locks

A smarter way to address this scenario would be to use the lock ... do
syntax with the lock(f, cond) function that automatically includes the
unlock() call.

lock(c) do
Access the resource when the lock is active
work_on_resource()

end

Locks are particularly crucial for multi threading scenarios where there is a
possibility of simultaneous access of resources by tasks.

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 22 / 33

Multithreading

Section 3

Multithreading

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 23 / 33

Multithreading

Multithreading

Julia process starts with a single thread when launched.

However, it can be launched with multiple threads by using the command

julia -t <no_of_threads> or
julia --threads <no_of_threads>

The same can be achieved by setting the environment variable
JULIA_NUM_THREADS to the required number of threads.

By starting Julia with julia -t 4, the following code provides the number
of active threads in the Julia environment.

julia> Threads.nthreads()
4

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 24 / 33

Multithreading

Threads.@spawn

@spawn will use any available thread and run a task on it.

julia> Threads.@spawn for i=1:100
sleep(1)
println("Step: $i")

end
Task (runnable) @0x0000000016a73990

julia> Step: 1
Step: 2
Step: 3
Step: 4
...
Step: 100

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 25 / 33

Multithreading

Threads.@threads

The values are printed serially as the task is running on a single thread of
the 4 currently available.

If you will like to parallelize the for loop, you could use the
Threads.@threads macro.

As can be seen, the printing is now in parallel. One could clearly see the
for loop has been split into 4 different threads of execution.

julia> Threads.@threads for i=1:100
sleep(i)
println("Step: $i")

end
Step: 26
Step: 51

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 26 / 33

Multithreading

Threads.@threads

You can launch Julia as shown: $ JULIA_NUM_THREADS=4
If you are using IJulia, you could follow the following steps.

ENV["JULIA_NUM_THREADS"] = 4
using IJulia
notebook()

Step: 1
Step: 76
Step: 77
Step: 52
Step: 2
Step: 27
Step: 100
Step: 25
Step: 50
Step: 75

When multiple threads are being executed in a program, synchronizing
across them can be a concern.

Locks are useful programming paradigms to address those needs.

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 27 / 33

Multithreading

Threads

Conditions() are thread-safe condition objects and must be used for thread
safety.

The second issue is low-level atomic operations.

Some of the LLVM defined low-level atomic operations are supported by Julia.

Lastly, finalizers and garbage collection may get affected with multithreaded
programs.

We will suggest the user reviews the manuals on multithreading for a better
understanding of the topic:

Multi-Threading, Julia Documentation Manuals:
https://docs.julialang.org/en/v1/manual/multi-threading/#man-multithreading

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 28 / 33

https://docs.julialang.org/en/v1/manual/multi-threading/#man-multithreading

Multithreading

Threads

Conditions() are thread-safe condition objects and must be used for thread
safety.

The second issue is low-level atomic operations.

Some of the LLVM defined low-level atomic operations are supported by Julia.

Lastly, finalizers and garbage collection may get affected with multithreaded
programs.

We will suggest the user reviews the manuals on multithreading for a better
understanding of the topic:

Multi-Threading, Julia Documentation Manuals:
https://docs.julialang.org/en/v1/manual/multi-threading/#man-multithreading

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 28 / 33

https://docs.julialang.org/en/v1/manual/multi-threading/#man-multithreading

Distributed computing

Section 4

Distributed computing

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 29 / 33

Distributed computing

Distributed computing

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 30 / 33

Distributed computing

Distributed computing architecture in Julia

The distributed architecture in Julia has all the similar models discussed n before, related
to asynchronous programming as well as multithreading programming.

However, there are certain additional complexities that are due to the distributed
architecture.

1 A master process governs the computing infrastructure management.
2 It utilizes a LocalManager to launch and manage Julia worker processes where the

local load can be executed in the same machine.
3 There is also a SSHManager that can connect to a remote host over an SSL

connection and communicate all remote actions to be carried out.
4 The connection management is kept outside of the architecture and it is presumed

all needed security restrictions and protocols are handled by the network layer.
5 A remote worker can be launched by the master process and a new id will be

assigned to the worker process. Id 1 is reserved for the master process.

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 31 / 33

Distributed computing

Distributed computing architecture in Julia

The distributed architecture in Julia has all the similar models discussed n before, related
to asynchronous programming as well as multithreading programming.

However, there are certain additional complexities that are due to the distributed
architecture.

1 A master process governs the computing infrastructure management.

2 It utilizes a LocalManager to launch and manage Julia worker processes where the
local load can be executed in the same machine.

3 There is also a SSHManager that can connect to a remote host over an SSL
connection and communicate all remote actions to be carried out.

4 The connection management is kept outside of the architecture and it is presumed
all needed security restrictions and protocols are handled by the network layer.

5 A remote worker can be launched by the master process and a new id will be
assigned to the worker process. Id 1 is reserved for the master process.

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 31 / 33

Distributed computing

Distributed computing architecture in Julia

The distributed architecture in Julia has all the similar models discussed n before, related
to asynchronous programming as well as multithreading programming.

However, there are certain additional complexities that are due to the distributed
architecture.

1 A master process governs the computing infrastructure management.
2 It utilizes a LocalManager to launch and manage Julia worker processes where the

local load can be executed in the same machine.

3 There is also a SSHManager that can connect to a remote host over an SSL
connection and communicate all remote actions to be carried out.

4 The connection management is kept outside of the architecture and it is presumed
all needed security restrictions and protocols are handled by the network layer.

5 A remote worker can be launched by the master process and a new id will be
assigned to the worker process. Id 1 is reserved for the master process.

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 31 / 33

Distributed computing

Distributed computing architecture in Julia

The distributed architecture in Julia has all the similar models discussed n before, related
to asynchronous programming as well as multithreading programming.

However, there are certain additional complexities that are due to the distributed
architecture.

1 A master process governs the computing infrastructure management.
2 It utilizes a LocalManager to launch and manage Julia worker processes where the

local load can be executed in the same machine.
3 There is also a SSHManager that can connect to a remote host over an SSL

connection and communicate all remote actions to be carried out.

4 The connection management is kept outside of the architecture and it is presumed
all needed security restrictions and protocols are handled by the network layer.

5 A remote worker can be launched by the master process and a new id will be
assigned to the worker process. Id 1 is reserved for the master process.

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 31 / 33

Distributed computing

Distributed computing architecture in Julia

The distributed architecture in Julia has all the similar models discussed n before, related
to asynchronous programming as well as multithreading programming.

However, there are certain additional complexities that are due to the distributed
architecture.

1 A master process governs the computing infrastructure management.
2 It utilizes a LocalManager to launch and manage Julia worker processes where the

local load can be executed in the same machine.
3 There is also a SSHManager that can connect to a remote host over an SSL

connection and communicate all remote actions to be carried out.
4 The connection management is kept outside of the architecture and it is presumed

all needed security restrictions and protocols are handled by the network layer.

5 A remote worker can be launched by the master process and a new id will be
assigned to the worker process. Id 1 is reserved for the master process.

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 31 / 33

Distributed computing

Distributed computing architecture in Julia

The distributed architecture in Julia has all the similar models discussed n before, related
to asynchronous programming as well as multithreading programming.

However, there are certain additional complexities that are due to the distributed
architecture.

1 A master process governs the computing infrastructure management.
2 It utilizes a LocalManager to launch and manage Julia worker processes where the

local load can be executed in the same machine.
3 There is also a SSHManager that can connect to a remote host over an SSL

connection and communicate all remote actions to be carried out.
4 The connection management is kept outside of the architecture and it is presumed

all needed security restrictions and protocols are handled by the network layer.
5 A remote worker can be launched by the master process and a new id will be

assigned to the worker process. Id 1 is reserved for the master process.

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 31 / 33

Distributed computing

Distributed computing architecture in Julia

1 Any code to be lanched by a worker is launched by a remotecall.

2 The remotecall may return an object of type Future that can be waited on
by a fetch call to get the output of the remote call.

3 The other mode of data exchange is a RemoteChannel that can be set up in
one of the processes while other worker processes can put!() data in it or
take!() data from it.

4 Just like local Channel objects they provide an easy way to program publish
and subscribe models.

5 Many remote connections may not need to exactly know the specifics of the
machine where the workload needs to be run.

6 They use macros like @spawnat with Any as parameter such that the
workload can be launched at any of the machines.

7 The Future object thus returned will be able to tunnel* through the proper
SSH connection to communicate to the correct worker in another physical
machine.

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 32 / 33

Distributed computing

Distributed computing architecture in Julia

1 Any code to be lanched by a worker is launched by a remotecall.
2 The remotecall may return an object of type Future that can be waited on

by a fetch call to get the output of the remote call.

3 The other mode of data exchange is a RemoteChannel that can be set up in
one of the processes while other worker processes can put!() data in it or
take!() data from it.

4 Just like local Channel objects they provide an easy way to program publish
and subscribe models.

5 Many remote connections may not need to exactly know the specifics of the
machine where the workload needs to be run.

6 They use macros like @spawnat with Any as parameter such that the
workload can be launched at any of the machines.

7 The Future object thus returned will be able to tunnel* through the proper
SSH connection to communicate to the correct worker in another physical
machine.

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 32 / 33

Distributed computing

Distributed computing architecture in Julia

1 Any code to be lanched by a worker is launched by a remotecall.
2 The remotecall may return an object of type Future that can be waited on

by a fetch call to get the output of the remote call.
3 The other mode of data exchange is a RemoteChannel that can be set up in

one of the processes while other worker processes can put!() data in it or
take!() data from it.

4 Just like local Channel objects they provide an easy way to program publish
and subscribe models.

5 Many remote connections may not need to exactly know the specifics of the
machine where the workload needs to be run.

6 They use macros like @spawnat with Any as parameter such that the
workload can be launched at any of the machines.

7 The Future object thus returned will be able to tunnel* through the proper
SSH connection to communicate to the correct worker in another physical
machine.

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 32 / 33

Distributed computing

Distributed computing architecture in Julia

1 Any code to be lanched by a worker is launched by a remotecall.
2 The remotecall may return an object of type Future that can be waited on

by a fetch call to get the output of the remote call.
3 The other mode of data exchange is a RemoteChannel that can be set up in

one of the processes while other worker processes can put!() data in it or
take!() data from it.

4 Just like local Channel objects they provide an easy way to program publish
and subscribe models.

5 Many remote connections may not need to exactly know the specifics of the
machine where the workload needs to be run.

6 They use macros like @spawnat with Any as parameter such that the
workload can be launched at any of the machines.

7 The Future object thus returned will be able to tunnel* through the proper
SSH connection to communicate to the correct worker in another physical
machine.

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 32 / 33

Distributed computing

Distributed computing architecture in Julia

1 Any code to be lanched by a worker is launched by a remotecall.
2 The remotecall may return an object of type Future that can be waited on

by a fetch call to get the output of the remote call.
3 The other mode of data exchange is a RemoteChannel that can be set up in

one of the processes while other worker processes can put!() data in it or
take!() data from it.

4 Just like local Channel objects they provide an easy way to program publish
and subscribe models.

5 Many remote connections may not need to exactly know the specifics of the
machine where the workload needs to be run.

6 They use macros like @spawnat with Any as parameter such that the
workload can be launched at any of the machines.

7 The Future object thus returned will be able to tunnel* through the proper
SSH connection to communicate to the correct worker in another physical
machine.

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 32 / 33

Distributed computing

Distributed computing architecture in Julia

1 Any code to be lanched by a worker is launched by a remotecall.
2 The remotecall may return an object of type Future that can be waited on

by a fetch call to get the output of the remote call.
3 The other mode of data exchange is a RemoteChannel that can be set up in

one of the processes while other worker processes can put!() data in it or
take!() data from it.

4 Just like local Channel objects they provide an easy way to program publish
and subscribe models.

5 Many remote connections may not need to exactly know the specifics of the
machine where the workload needs to be run.

6 They use macros like @spawnat with Any as parameter such that the
workload can be launched at any of the machines.

7 The Future object thus returned will be able to tunnel* through the proper
SSH connection to communicate to the correct worker in another physical
machine.

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 32 / 33

Distributed computing

Distributed computing architecture in Julia

1 Any code to be lanched by a worker is launched by a remotecall.
2 The remotecall may return an object of type Future that can be waited on

by a fetch call to get the output of the remote call.
3 The other mode of data exchange is a RemoteChannel that can be set up in

one of the processes while other worker processes can put!() data in it or
take!() data from it.

4 Just like local Channel objects they provide an easy way to program publish
and subscribe models.

5 Many remote connections may not need to exactly know the specifics of the
machine where the workload needs to be run.

6 They use macros like @spawnat with Any as parameter such that the
workload can be launched at any of the machines.

7 The Future object thus returned will be able to tunnel* through the proper
SSH connection to communicate to the correct worker in another physical
machine.

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 32 / 33

Distributed computing

Distributed computing architecture in Julia

1 Similarly, the code to be run by all the worker processes must be
available to them.

2 One option may be to deploy it as a package such that the package is
available in all the processes.

3 But the package needs to be selected by using in each individual
processes separately.

Multiprocessing and Distributed Computing
However, interested readers are advised to refer to the Julia documentation
manual on Multiprocessing and Distributed Computing
https://docs.julialang.org/en/v1/manual/distributed-computing/

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 33 / 33

https://docs.julialang.org/en/v1/manual/distributed-computing/

Distributed computing

Distributed computing architecture in Julia

1 Similarly, the code to be run by all the worker processes must be
available to them.

2 One option may be to deploy it as a package such that the package is
available in all the processes.

3 But the package needs to be selected by using in each individual
processes separately.

Multiprocessing and Distributed Computing
However, interested readers are advised to refer to the Julia documentation
manual on Multiprocessing and Distributed Computing
https://docs.julialang.org/en/v1/manual/distributed-computing/

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 33 / 33

https://docs.julialang.org/en/v1/manual/distributed-computing/

Distributed computing

Distributed computing architecture in Julia

1 Similarly, the code to be run by all the worker processes must be
available to them.

2 One option may be to deploy it as a package such that the package is
available in all the processes.

3 But the package needs to be selected by using in each individual
processes separately.

Multiprocessing and Distributed Computing
However, interested readers are advised to refer to the Julia documentation
manual on Multiprocessing and Distributed Computing
https://docs.julialang.org/en/v1/manual/distributed-computing/

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 33 / 33

https://docs.julialang.org/en/v1/manual/distributed-computing/

Distributed computing

Distributed computing architecture in Julia

1 Similarly, the code to be run by all the worker processes must be
available to them.

2 One option may be to deploy it as a package such that the package is
available in all the processes.

3 But the package needs to be selected by using in each individual
processes separately.

Multiprocessing and Distributed Computing
However, interested readers are advised to refer to the Julia documentation
manual on Multiprocessing and Distributed Computing
https://docs.julialang.org/en/v1/manual/distributed-computing/

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 33 / 33

https://docs.julialang.org/en/v1/manual/distributed-computing/

Distributed computing

Distributed computing architecture in Julia

1 Similarly, the code to be run by all the worker processes must be
available to them.

2 One option may be to deploy it as a package such that the package is
available in all the processes.

3 But the package needs to be selected by using in each individual
processes separately.

Multiprocessing and Distributed Computing
However, interested readers are advised to refer to the Julia documentation
manual on Multiprocessing and Distributed Computing
https://docs.julialang.org/en/v1/manual/distributed-computing/

Alberto Paoluzzi – Lecture 08, Parallel programming in JuliaParallel and Distributed Computing Wed 23-03-2022 33 / 33

https://docs.julialang.org/en/v1/manual/distributed-computing/

	Parallel programming
	Asynchronous programming (concurrent-computing)
	Multithreading
	Distributed computing

