
Parallel and Distributed Computing

Alberto Paoluzzi – Lecture 18

Wed 27-04-2022

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 1 / 36



Source: Steve Lantz, Virtual Workshop: Understanding GPU Architecture,
Cornell Center for Advanced Computing

1 GPU Characteristics

2 Threads and Cores Redefined

3 SIMT and Warps

4 Kernels and Streaming Multiprocessors (SMs)

5 Memory Levels

6 Memory Types – 1/2

7 Volta Block Diagram

8 Tensor Cores

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 2 / 36

https://cvw.cac.cornell.edu/topics
https://cvw.cac.cornell.edu/gpuarch/default


GPU Characteristics

Section 1

GPU Characteristics

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 3 / 36



GPU Characteristics

GPU Characteristics
The transistor counts associated with various functions are represented abstractly
by the relative sizes of the different shaded areas

In the figure, green corresponds to computation; gold is instruction processing;
purple is L1 cache; blue is higher-level cache, and orange is memory (DRAM, which
should really be thousands of times larger than the caches).

Figura 1: Some examples
Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 4 / 36



GPU Characteristics

CPU vs GPU

The diagram above, which is taken from the CUDA C++ Programming Guide (v.11.2),
does not depict the actual hardware design of any particular CPU or GPU

However, based on the size, color, and number of the various blocks, the figure does
suggest that:

CPUs can handle more complex workflows compared to GPUs.

CPUs don’t have as many arithmetic logic units or floating point units as
GPUs (the small green boxes above, roughly speaking), but the ALUs and FPUs in
a CPU core are individually more capable.
CPUs have more cache memory than GPUs.
GPUs are really designed for workloads that can be parallelized to a significant
degree

This is indicated in the diagram by having just one gold control box for every row of the
little green computational boxes.

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 5 / 36



GPU Characteristics

CPU vs GPU

The diagram above, which is taken from the CUDA C++ Programming Guide (v.11.2),
does not depict the actual hardware design of any particular CPU or GPU

However, based on the size, color, and number of the various blocks, the figure does
suggest that:

CPUs can handle more complex workflows compared to GPUs.
CPUs don’t have as many arithmetic logic units or floating point units as

GPUs (the small green boxes above, roughly speaking), but the ALUs and FPUs in
a CPU core are individually more capable.
CPUs have more cache memory than GPUs.
GPUs are really designed for workloads that can be parallelized to a significant
degree

This is indicated in the diagram by having just one gold control box for every row of the
little green computational boxes.

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 5 / 36



GPU Characteristics

CPU vs GPU

The diagram above, which is taken from the CUDA C++ Programming Guide (v.11.2),
does not depict the actual hardware design of any particular CPU or GPU

However, based on the size, color, and number of the various blocks, the figure does
suggest that:

CPUs can handle more complex workflows compared to GPUs.
CPUs don’t have as many arithmetic logic units or floating point units as
GPUs (the small green boxes above, roughly speaking), but the ALUs and FPUs in
a CPU core are individually more capable.

CPUs have more cache memory than GPUs.
GPUs are really designed for workloads that can be parallelized to a significant
degree

This is indicated in the diagram by having just one gold control box for every row of the
little green computational boxes.

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 5 / 36



GPU Characteristics

CPU vs GPU

The diagram above, which is taken from the CUDA C++ Programming Guide (v.11.2),
does not depict the actual hardware design of any particular CPU or GPU

However, based on the size, color, and number of the various blocks, the figure does
suggest that:

CPUs can handle more complex workflows compared to GPUs.
CPUs don’t have as many arithmetic logic units or floating point units as
GPUs (the small green boxes above, roughly speaking), but the ALUs and FPUs in
a CPU core are individually more capable.
CPUs have more cache memory than GPUs.

GPUs are really designed for workloads that can be parallelized to a significant
degree

This is indicated in the diagram by having just one gold control box for every row of the
little green computational boxes.

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 5 / 36



GPU Characteristics

CPU vs GPU

The diagram above, which is taken from the CUDA C++ Programming Guide (v.11.2),
does not depict the actual hardware design of any particular CPU or GPU

However, based on the size, color, and number of the various blocks, the figure does
suggest that:

CPUs can handle more complex workflows compared to GPUs.
CPUs don’t have as many arithmetic logic units or floating point units as
GPUs (the small green boxes above, roughly speaking), but the ALUs and FPUs in
a CPU core are individually more capable.
CPUs have more cache memory than GPUs.
GPUs are really designed for workloads that can be parallelized to a significant
degree

This is indicated in the diagram by having just one gold control box for every row of the
little green computational boxes.

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 5 / 36



Threads and Cores Redefined

Section 2

Threads and Cores Redefined

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 6 / 36



Threads and Cores Redefined

Threads and Cores Redefined

What is the secret to the high performance that can be achieved by a GPU?

The answer lies in the graphics pipeline that the GPU is meant to “pump”: the
sequence of steps required to take a scene of geometrical objects described in 3D
coordinates and render them on a 2D display.

Two key properties of the graphics pipeline permit its speed to be accelerated

1 a typical scene is composed of many independent objects (e.g., a mesh of tiny
triangles approximating a surface)

2 the sequence of steps needed to render each of the objects is basically the
same for all of the objects, so that the computational steps may be performed
in parallel on all them at once

By their very nature, then, GPUs must be highly capable parallel computing
engines.

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 7 / 36



Threads and Cores Redefined

Threads and Cores Redefined

What is the secret to the high performance that can be achieved by a GPU?

The answer lies in the graphics pipeline that the GPU is meant to “pump”: the
sequence of steps required to take a scene of geometrical objects described in 3D
coordinates and render them on a 2D display.

Two key properties of the graphics pipeline permit its speed to be accelerated

1 a typical scene is composed of many independent objects (e.g., a mesh of tiny
triangles approximating a surface)

2 the sequence of steps needed to render each of the objects is basically the
same for all of the objects, so that the computational steps may be performed
in parallel on all them at once

By their very nature, then, GPUs must be highly capable parallel computing
engines.

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 7 / 36



Threads and Cores Redefined

CPUs vs GPUs

But CPUs, too, have evolved to become highly capable parallel processors in
their own right—and in this evolution, they have acquired certain
similarities to GPUs

Therefore, it is not surprising to find a degree of overlap in the terminology
used to describe the parallelism in both kinds of processors

However, one should be careful to understand the distinctions as well,
because the precise meanings of terms can differ signficantly between the
two types of devices.

For example, with CPUs as well as GPUs, one may speak of threads that
run on different cores

In both cases, one envisions distinct streams of instructions that are
scheduled to run on different execution units

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 8 / 36



Threads and Cores Redefined

CPUs vs GPUs

Yet the ways in which threads and cores act upon data are quite different in
the two cases.

It turns out that a single core in a GPU—which we’ll call a CUDA core
hereafter, for clarity—is much more like a single vector lane in the vector
processing unit of a CPU

Why? Because CUDA cores are essentially working in teams of 32 to execute
a Single Instruction on Multiple Data, a type of parallelism known as SIMD

In CPUs, SIMD operations are possible as well, but they are carried out by
vector units, based on smaller data groupings (typically 8 or 16 elements).

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 9 / 36



Threads and Cores Redefined

Comparison table
The table below attempts to reduce the potential sources of confusion

It lists and defines the terms that apply to the various levels of parallelism in a GPU, and
gives their rough equivalents in CPU terminology

Figura 2: Comparison table

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 10 / 36



SIMT and Warps

Section 3

SIMT and Warps

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 11 / 36



SIMT and Warps

SIMT and Warps

SIMT
As you might expect, the NVIDIA term “Single Instruction Multiple
Threads” (SIMT) is closely related to a better known term, Single
Instruction Multiple Data (SIMD).

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 12 / 36



SIMT and Warps

Single Instruction Multiple Threads” (SIMT)

What’s the difference between SIMD and SIMT?

In pure SIMD, a single instruction acts upon all the data in exactly the
same way
In SIMT, this restriction is loosened a bit: selected threads can be
activated or deactivated, so that instructions and data are processed
only on the active threads, while the local data remain unchanged on
inactive threads.

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 13 / 36



SIMT and Warps

Single Instruction Multiple Threads” (SIMT)

What’s the difference between SIMD and SIMT?
In pure SIMD, a single instruction acts upon all the data in exactly the
same way

In SIMT, this restriction is loosened a bit: selected threads can be
activated or deactivated, so that instructions and data are processed
only on the active threads, while the local data remain unchanged on
inactive threads.

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 13 / 36



SIMT and Warps

Single Instruction Multiple Threads” (SIMT)

What’s the difference between SIMD and SIMT?
In pure SIMD, a single instruction acts upon all the data in exactly the
same way
In SIMT, this restriction is loosened a bit: selected threads can be
activated or deactivated, so that instructions and data are processed
only on the active threads, while the local data remain unchanged on
inactive threads.

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 13 / 36



SIMT and Warps

SIMT can accommodate branching
Given an if-else construct beginning with if (condition), the threads for
which condition==true will be active when running statements in the if clause,

and the threads for which condition==false will be active when running
statements in the else clause

The results should be correct, but the inactive threads will do no useful work while
they are waiting for statements in the active clause to complete

Figura 3: CBranching within SIMT

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 14 / 36



SIMT and Warps

SIMT can accommodate branching
Given an if-else construct beginning with if (condition), the threads for
which condition==true will be active when running statements in the if clause,

and the threads for which condition==false will be active when running
statements in the else clause

The results should be correct, but the inactive threads will do no useful work while
they are waiting for statements in the active clause to complete

Figura 3: CBranching within SIMT
Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 14 / 36



SIMT and Warps

Synchronization of shared data at intermediate points
Note that in NVIDIA GPUs prior to Volta, the entire if clause (i.e., both
statements A and B) would have to be executed by the relevant threads,

then the entire else clause (both statements X and Y) would have to be executed
by the remainder of the threads, then all threads would have to synchronize before
continuing execution (statement Z)

Volta’s more flexible SIMT model permits synchronization of shared data at
intermediate points (say, after A and X).

Figura 4: Comparison table
Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 15 / 36



SIMT and Warps

CPU code vs SIMT parallelism on the GPU

In contrast to how CPU code is written, SIMT parallelism on the GPU does
not have to be expressed via “vectorized loops”

Instead—at least in CUDA—every GPU thread executes the kernel code as
written

This somewhat justifies NVIDIA’s “thread” nomenclature

But note that GPU code can also be written using OpenMP or OpenACC
directives, in which case it can end up looking very much like vectorized
CPU code.

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 16 / 36



SIMT and Warps

Block of threads divided into warps for SIMT execution

One warp consists of a bundle of 32 threads with consecutive thread indexes.
The threads in a warp are then processed together by a set of 32 CUDA
cores.

vectorized loop on a CPU is chunked into vectors of a fixed size
then processed by a set of vector lanes.

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 17 / 36



SIMT and Warps

Block of threads divided into warps for SIMT execution

One warp consists of a bundle of 32 threads with consecutive thread indexes.
The threads in a warp are then processed together by a set of 32 CUDA
cores.

vectorized loop on a CPU is chunked into vectors of a fixed size
then processed by a set of vector lanes.

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 17 / 36



SIMT and Warps

Origin of name Warp

The reason for bundling threads into warps of 32 is simply that in NVIDIA’s hardware,
CUDA cores are divided into fixed groups of 32

Each such group is analogous to a vector processing unit (VPU) in a CPU

Breaking down a large block of threads into chunks of this size simplifies the SM’s task of
scheduling the entire thread block on its available resources.

Apparently NVIDIA borrowed the term “warp” from weaving, where it refers to the set of
vertical threads through which the weaver’s shuttle passes

To quote the original paper by Lindholm et al that introduced SIMT, “The term warp
originates from weaving, the first parallel-thread technology.” (NVIDIA continues to use
this quote in their CUDA C++ Programming Guide.)

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 18 / 36



Kernels and Streaming Multiprocessors (SMs)

Section 4

Kernels and Streaming Multiprocessors (SMs)

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 19 / 36



Kernels and Streaming Multiprocessors (SMs)

Kernels and Streaming Multiprocessors (SMs)

We continue our survey of GPU-related terminology by looking at the
relationship between kernels, thread blocks, and streaming multiprocessors
(SMs).

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 20 / 36



Kernels and Streaming Multiprocessors (SMs)

Kernels (in software)

A function that is meant to be executed in parallel on an attached GPU is
called a kernel

In CUDA, a kernel is usually identified by the presence of the __global__
specifier in front of an otherwise normal-looking C++ function declaration

The designation __global__ means the kernel may be called from either
the host or the device, but it will execute on the device.

Instead of being executed only once, a kernel is executed N times in parallel
by N different threads on the GPU

Each thread is assigned a unique ID (in effect, an index) that it can use to
compute memory addresses and make control decisions.

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 21 / 36



Kernels and Streaming Multiprocessors (SMs)

CUDA kernel execution
A CUDA kernel is executed by an
array of threads

All threads run the same code

Each thread has an ID that it uses to
compute memory addresses and
make control decisions

Figura 5: CUDA kernel execution

Accordingly, kernel calls must supply
special arguments specifying how many
threads to use on the GPU

They do this using CUDA’s “execution
configuration” syntax, which looks like
this: fun<<<1, N>>>(x, y, z)

Note that the first entry in the
configuration (1, in this case) gives the
number of blocks of N threads that will
be launched

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 22 / 36



Kernels and Streaming Multiprocessors (SMs)

CUDA kernel execution
A CUDA kernel is executed by an
array of threads

All threads run the same code

Each thread has an ID that it uses to
compute memory addresses and
make control decisions

Figura 5: CUDA kernel execution

Accordingly, kernel calls must supply
special arguments specifying how many
threads to use on the GPU

They do this using CUDA’s “execution
configuration” syntax, which looks like
this: fun<<<1, N>>>(x, y, z)

Note that the first entry in the
configuration (1, in this case) gives the
number of blocks of N threads that will
be launched

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 22 / 36



Kernels and Streaming Multiprocessors (SMs)

CUDA kernel execution
A CUDA kernel is executed by an
array of threads

All threads run the same code

Each thread has an ID that it uses to
compute memory addresses and
make control decisions

Figura 5: CUDA kernel execution

Accordingly, kernel calls must supply
special arguments specifying how many
threads to use on the GPU

They do this using CUDA’s “execution
configuration” syntax, which looks like
this: fun<<<1, N>>>(x, y, z)

Note that the first entry in the
configuration (1, in this case) gives the
number of blocks of N threads that will
be launched

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 22 / 36



Kernels and Streaming Multiprocessors (SMs)

Streaming Sultiprocessors (in hardware)

On the GPU, a kernel call is executed by one or more streaming
multiprocessors, or SMs

The SMs are the hardware homes of the CUDA cores that execute the
threads

The CUDA cores in each SM are always arranged in sets of 32 so that the
SM can use them to execute full warps of threads

The exact number of SMs available in a device depends on its NVIDIA
processor family (Volta, Turing, etc.), as well as the specific model number
of the processor

Thus, the Volta chip in the Tesla V100 has 80 SMs in total, while the more
recent Turing chip in the Quadro RTX 5000 has just 48.

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 23 / 36



Kernels and Streaming Multiprocessors (SMs)

number of SMs that the GPU will actually use

However, the number of SMs that the GPU will actually use to execute a
kernel call is limited to the number of thread blocks specified in the call

Taking the call fun<<<M, N>>>(x, y, z) as an example, there are at
most M blocks that can be assigned to different SMs

A thread block may not be split between different SMs

(If there are more blocks than available SMs, then more than one block may
be assigned to the same SM.) By distributing blocks in this manner, the
GPU can run independent blocks of threads in parallel on different SMs.

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 24 / 36



Kernels and Streaming Multiprocessors (SMs)

SM’s schedulers and Local memory

Each SM then divides the N threads in its current block into warps of 32
threads for parallel execution internally

On every cycle, each SM’s schedulers are responsible for assigning full warps
of threads to run on available sets of 32 CUDA cores

(The Volta architecture has 4 such schedulers per SM.) Any leftover, partial
warps in a thread block will still be assigned to run on a set of 32 CUDA
cores.
Local memory
The SM includes several levels of memory that can be accessed only by the
CUDA cores of that SM: registers, L1 cache, constant caches, and shared
memory
The exact properties of the per-SM and global memory available in Volta
GPUs will be outlined shortly.

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 25 / 36



Memory Levels

Section 5

Memory Levels

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 26 / 36



Memory Levels

Memory Levels

Figura 6: Memory Levels

Like a CPU, the GPU
relies on a memory
hierarchy to ensure that
its processing engines
are kept supplied with
the data they need

Like cores in a CPU, the
streaming
multiprocessors (SMs) in
a GPU require data to
be in registers to be
available for
computations.

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 27 / 36



Memory Levels

Memory Levels

Figura 6: Memory Levels

Like a CPU, the GPU
relies on a memory
hierarchy to ensure that
its processing engines
are kept supplied with
the data they need

Like cores in a CPU, the
streaming
multiprocessors (SMs) in
a GPU require data to
be in registers to be
available for
computations.

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 27 / 36



Memory Levels

Memory Levels

Figura 7: Memory Levels

Depending on where the data start, they may have to
hop through several layers of cache to enter the
registers of an SM and become accessible to the
CUDA cores.

Global memory is by far the largest layer, but it is also
furthest from the SMs
Clearly it would be favorable for 4-byte operands to
travel together in groups of 32 as they move back and
forth between caches and registers and CUDA cores

Why? A 32-wide group is exactly right to supply a
warp of 32 threads, all at once. Therefore, it makes
perfect sense that the size of the cache line in a GPU
is 32 x (4 bytes) = 128 bytes.

Notice that data transfers onto and off of the device
are mediated by the L2 cache. In most cases, the
incoming data will proceed from the L2 into the large
global memory of the device.

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 28 / 36



Memory Levels

Memory Levels

Figura 7: Memory Levels

Depending on where the data start, they may have to
hop through several layers of cache to enter the
registers of an SM and become accessible to the
CUDA cores.

Global memory is by far the largest layer, but it is also
furthest from the SMs
Clearly it would be favorable for 4-byte operands to
travel together in groups of 32 as they move back and
forth between caches and registers and CUDA cores

Why? A 32-wide group is exactly right to supply a
warp of 32 threads, all at once. Therefore, it makes
perfect sense that the size of the cache line in a GPU
is 32 x (4 bytes) = 128 bytes.

Notice that data transfers onto and off of the device
are mediated by the L2 cache. In most cases, the
incoming data will proceed from the L2 into the large
global memory of the device.

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 28 / 36



Memory Levels

Memory Levels

Figura 7: Memory Levels

Depending on where the data start, they may have to
hop through several layers of cache to enter the
registers of an SM and become accessible to the
CUDA cores.

Global memory is by far the largest layer, but it is also
furthest from the SMs
Clearly it would be favorable for 4-byte operands to
travel together in groups of 32 as they move back and
forth between caches and registers and CUDA cores

Why? A 32-wide group is exactly right to supply a
warp of 32 threads, all at once. Therefore, it makes
perfect sense that the size of the cache line in a GPU
is 32 x (4 bytes) = 128 bytes.

Notice that data transfers onto and off of the device
are mediated by the L2 cache. In most cases, the
incoming data will proceed from the L2 into the large
global memory of the device.

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 28 / 36



Memory Levels

Memory Levels

Figura 7: Memory Levels

Depending on where the data start, they may have to
hop through several layers of cache to enter the
registers of an SM and become accessible to the
CUDA cores.

Global memory is by far the largest layer, but it is also
furthest from the SMs
Clearly it would be favorable for 4-byte operands to
travel together in groups of 32 as they move back and
forth between caches and registers and CUDA cores

Why? A 32-wide group is exactly right to supply a
warp of 32 threads, all at once. Therefore, it makes
perfect sense that the size of the cache line in a GPU
is 32 x (4 bytes) = 128 bytes.

Notice that data transfers onto and off of the device
are mediated by the L2 cache. In most cases, the
incoming data will proceed from the L2 into the large
global memory of the device.

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 28 / 36



Memory Types – 1/2

Section 6

Memory Types – 1/2

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 29 / 36



Memory Types – 1/2

Memory Types – 1/2
The first list covers the on-chip memory areas that are closest to the CUDA
cores. They are part of every SM

Register File - denotes the area of memory that feeds directly into the CUDA cores. It is
organized into 32 banks, matching the 32 threads in a warp. Think of the register file as a big
matrix of 4-byte elements, having many rows and 32 columns. A warp operates on full rows;
within a given row, each thread (CUDA core) operates on a different column (bank)

L1 Cache - refers to the usual on-chip storage location providing fast access to data that are
recently read from, or written to, main memory (RAM). L1 serves as the overflow region when the
amount of active data exceeeds what an SM’s register file can hold, a condition which is termed
“register spilling”. In L1, the cache lines and spilled registers are organized into banks, just as in
the register file

Shared Memory - is a memory area that physically resides in the same memory as the L1 cache,
but differs from L1 in that all its data may be accessed by any thread in a thread block. This
allows threads to communicate and share data with each other. Variables that occupy it must be
declared explicitly by an application. The application can also set the dividing line between L1 and
shared memory

Constant Caches - are special caches pertaining to variables declared as read-only constants in
global memory. Such variables can be read by any thread in a thread block. The main and best
use of these caches is to broadcast a single constant value to all the threads in a warp

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 30 / 36



Memory Types – 1/2

Memory Types – 1/2
The first list covers the on-chip memory areas that are closest to the CUDA
cores. They are part of every SM
Register File - denotes the area of memory that feeds directly into the CUDA cores. It is
organized into 32 banks, matching the 32 threads in a warp. Think of the register file as a big
matrix of 4-byte elements, having many rows and 32 columns. A warp operates on full rows;
within a given row, each thread (CUDA core) operates on a different column (bank)

L1 Cache - refers to the usual on-chip storage location providing fast access to data that are
recently read from, or written to, main memory (RAM). L1 serves as the overflow region when the
amount of active data exceeeds what an SM’s register file can hold, a condition which is termed
“register spilling”. In L1, the cache lines and spilled registers are organized into banks, just as in
the register file

Shared Memory - is a memory area that physically resides in the same memory as the L1 cache,
but differs from L1 in that all its data may be accessed by any thread in a thread block. This
allows threads to communicate and share data with each other. Variables that occupy it must be
declared explicitly by an application. The application can also set the dividing line between L1 and
shared memory

Constant Caches - are special caches pertaining to variables declared as read-only constants in
global memory. Such variables can be read by any thread in a thread block. The main and best
use of these caches is to broadcast a single constant value to all the threads in a warp

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 30 / 36



Memory Types – 1/2

Memory Types – 1/2
The first list covers the on-chip memory areas that are closest to the CUDA
cores. They are part of every SM
Register File - denotes the area of memory that feeds directly into the CUDA cores. It is
organized into 32 banks, matching the 32 threads in a warp. Think of the register file as a big
matrix of 4-byte elements, having many rows and 32 columns. A warp operates on full rows;
within a given row, each thread (CUDA core) operates on a different column (bank)

L1 Cache - refers to the usual on-chip storage location providing fast access to data that are
recently read from, or written to, main memory (RAM). L1 serves as the overflow region when the
amount of active data exceeeds what an SM’s register file can hold, a condition which is termed
“register spilling”. In L1, the cache lines and spilled registers are organized into banks, just as in
the register file

Shared Memory - is a memory area that physically resides in the same memory as the L1 cache,
but differs from L1 in that all its data may be accessed by any thread in a thread block. This
allows threads to communicate and share data with each other. Variables that occupy it must be
declared explicitly by an application. The application can also set the dividing line between L1 and
shared memory

Constant Caches - are special caches pertaining to variables declared as read-only constants in
global memory. Such variables can be read by any thread in a thread block. The main and best
use of these caches is to broadcast a single constant value to all the threads in a warp

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 30 / 36



Memory Types – 1/2

Memory Types – 1/2
The first list covers the on-chip memory areas that are closest to the CUDA
cores. They are part of every SM
Register File - denotes the area of memory that feeds directly into the CUDA cores. It is
organized into 32 banks, matching the 32 threads in a warp. Think of the register file as a big
matrix of 4-byte elements, having many rows and 32 columns. A warp operates on full rows;
within a given row, each thread (CUDA core) operates on a different column (bank)

L1 Cache - refers to the usual on-chip storage location providing fast access to data that are
recently read from, or written to, main memory (RAM). L1 serves as the overflow region when the
amount of active data exceeeds what an SM’s register file can hold, a condition which is termed
“register spilling”. In L1, the cache lines and spilled registers are organized into banks, just as in
the register file

Shared Memory - is a memory area that physically resides in the same memory as the L1 cache,
but differs from L1 in that all its data may be accessed by any thread in a thread block. This
allows threads to communicate and share data with each other. Variables that occupy it must be
declared explicitly by an application. The application can also set the dividing line between L1 and
shared memory

Constant Caches - are special caches pertaining to variables declared as read-only constants in
global memory. Such variables can be read by any thread in a thread block. The main and best
use of these caches is to broadcast a single constant value to all the threads in a warp

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 30 / 36



Memory Types – 1/2

Memory Types – 1/2
The first list covers the on-chip memory areas that are closest to the CUDA
cores. They are part of every SM
Register File - denotes the area of memory that feeds directly into the CUDA cores. It is
organized into 32 banks, matching the 32 threads in a warp. Think of the register file as a big
matrix of 4-byte elements, having many rows and 32 columns. A warp operates on full rows;
within a given row, each thread (CUDA core) operates on a different column (bank)

L1 Cache - refers to the usual on-chip storage location providing fast access to data that are
recently read from, or written to, main memory (RAM). L1 serves as the overflow region when the
amount of active data exceeeds what an SM’s register file can hold, a condition which is termed
“register spilling”. In L1, the cache lines and spilled registers are organized into banks, just as in
the register file

Shared Memory - is a memory area that physically resides in the same memory as the L1 cache,
but differs from L1 in that all its data may be accessed by any thread in a thread block. This
allows threads to communicate and share data with each other. Variables that occupy it must be
declared explicitly by an application. The application can also set the dividing line between L1 and
shared memory

Constant Caches - are special caches pertaining to variables declared as read-only constants in
global memory. Such variables can be read by any thread in a thread block. The main and best
use of these caches is to broadcast a single constant value to all the threads in a warp

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 30 / 36



Memory Types – 1/2

Memory Types – 2/2

The second list pertains to the more distant, larger memory areas that are
shared by all the SMs

L2 Cache - is a further on-chip cache for retaining copies of the data that travel back and forth
between the SMs and main memory. Like the L1, the L2 cache is intended to speed up
subsequent reloads. But unlike the L1 cache(s), there is just one L2 that is shared by all the SMs.
The L2 cache is also situated in the path of data moving on or off the device via PCIe or NVLink

Global Memory - represents the bulk of the main memory of the device, equivalent to RAM in a
CPU-based processor. For performance reasons, the Tesla V100 has special HBM2
high-bandwidth memory, while the Quadro RTX 5000 has fast GDDR6 graphics memory

Local Memory - corresponds to specially mapped regions of main memory that are assigned to
each SM. Whenever “register spilling” overflows the L1 cache on a particular SM, the excess data
are further offloaded to L2, then to “local memory”. The performance penalty for reloading a
spilled register becomes steeper for every memory level that must be traversed in order to retrieve
it

Texture and Constant Memory - are regions of main memory that are treated as read-only by the
device. When fetched to an SM, variables with a “texture” or “constant” declaration can be read
by any thread in a thread block, much like shared memory. Texture memory is cached in L1, while
constant memory is cached in the constant caches

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 31 / 36



Memory Types – 1/2

Memory Types – 2/2

The second list pertains to the more distant, larger memory areas that are
shared by all the SMs
L2 Cache - is a further on-chip cache for retaining copies of the data that travel back and forth
between the SMs and main memory. Like the L1, the L2 cache is intended to speed up
subsequent reloads. But unlike the L1 cache(s), there is just one L2 that is shared by all the SMs.
The L2 cache is also situated in the path of data moving on or off the device via PCIe or NVLink

Global Memory - represents the bulk of the main memory of the device, equivalent to RAM in a
CPU-based processor. For performance reasons, the Tesla V100 has special HBM2
high-bandwidth memory, while the Quadro RTX 5000 has fast GDDR6 graphics memory

Local Memory - corresponds to specially mapped regions of main memory that are assigned to
each SM. Whenever “register spilling” overflows the L1 cache on a particular SM, the excess data
are further offloaded to L2, then to “local memory”. The performance penalty for reloading a
spilled register becomes steeper for every memory level that must be traversed in order to retrieve
it

Texture and Constant Memory - are regions of main memory that are treated as read-only by the
device. When fetched to an SM, variables with a “texture” or “constant” declaration can be read
by any thread in a thread block, much like shared memory. Texture memory is cached in L1, while
constant memory is cached in the constant caches

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 31 / 36



Memory Types – 1/2

Memory Types – 2/2

The second list pertains to the more distant, larger memory areas that are
shared by all the SMs
L2 Cache - is a further on-chip cache for retaining copies of the data that travel back and forth
between the SMs and main memory. Like the L1, the L2 cache is intended to speed up
subsequent reloads. But unlike the L1 cache(s), there is just one L2 that is shared by all the SMs.
The L2 cache is also situated in the path of data moving on or off the device via PCIe or NVLink

Global Memory - represents the bulk of the main memory of the device, equivalent to RAM in a
CPU-based processor. For performance reasons, the Tesla V100 has special HBM2
high-bandwidth memory, while the Quadro RTX 5000 has fast GDDR6 graphics memory

Local Memory - corresponds to specially mapped regions of main memory that are assigned to
each SM. Whenever “register spilling” overflows the L1 cache on a particular SM, the excess data
are further offloaded to L2, then to “local memory”. The performance penalty for reloading a
spilled register becomes steeper for every memory level that must be traversed in order to retrieve
it

Texture and Constant Memory - are regions of main memory that are treated as read-only by the
device. When fetched to an SM, variables with a “texture” or “constant” declaration can be read
by any thread in a thread block, much like shared memory. Texture memory is cached in L1, while
constant memory is cached in the constant caches

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 31 / 36



Memory Types – 1/2

Memory Types – 2/2

The second list pertains to the more distant, larger memory areas that are
shared by all the SMs
L2 Cache - is a further on-chip cache for retaining copies of the data that travel back and forth
between the SMs and main memory. Like the L1, the L2 cache is intended to speed up
subsequent reloads. But unlike the L1 cache(s), there is just one L2 that is shared by all the SMs.
The L2 cache is also situated in the path of data moving on or off the device via PCIe or NVLink

Global Memory - represents the bulk of the main memory of the device, equivalent to RAM in a
CPU-based processor. For performance reasons, the Tesla V100 has special HBM2
high-bandwidth memory, while the Quadro RTX 5000 has fast GDDR6 graphics memory

Local Memory - corresponds to specially mapped regions of main memory that are assigned to
each SM. Whenever “register spilling” overflows the L1 cache on a particular SM, the excess data
are further offloaded to L2, then to “local memory”. The performance penalty for reloading a
spilled register becomes steeper for every memory level that must be traversed in order to retrieve
it

Texture and Constant Memory - are regions of main memory that are treated as read-only by the
device. When fetched to an SM, variables with a “texture” or “constant” declaration can be read
by any thread in a thread block, much like shared memory. Texture memory is cached in L1, while
constant memory is cached in the constant caches

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 31 / 36



Memory Types – 1/2

Memory Types – 2/2

The second list pertains to the more distant, larger memory areas that are
shared by all the SMs
L2 Cache - is a further on-chip cache for retaining copies of the data that travel back and forth
between the SMs and main memory. Like the L1, the L2 cache is intended to speed up
subsequent reloads. But unlike the L1 cache(s), there is just one L2 that is shared by all the SMs.
The L2 cache is also situated in the path of data moving on or off the device via PCIe or NVLink

Global Memory - represents the bulk of the main memory of the device, equivalent to RAM in a
CPU-based processor. For performance reasons, the Tesla V100 has special HBM2
high-bandwidth memory, while the Quadro RTX 5000 has fast GDDR6 graphics memory

Local Memory - corresponds to specially mapped regions of main memory that are assigned to
each SM. Whenever “register spilling” overflows the L1 cache on a particular SM, the excess data
are further offloaded to L2, then to “local memory”. The performance penalty for reloading a
spilled register becomes steeper for every memory level that must be traversed in order to retrieve
it

Texture and Constant Memory - are regions of main memory that are treated as read-only by the
device. When fetched to an SM, variables with a “texture” or “constant” declaration can be read
by any thread in a thread block, much like shared memory. Texture memory is cached in L1, while
constant memory is cached in the constant caches

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 31 / 36



Volta Block Diagram

Section 7

Volta Block Diagram

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 32 / 36



Volta Block Diagram

Volta Block Diagram
The NVIDIA Tesla V100 accelerator is built around the Volta GV100 GPU.

Figura 8: Memory Levels
Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 33 / 36



Tensor Cores

Section 8

Tensor Cores

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 34 / 36



Tensor Cores

Tensor Cores
The basic role of a tensor core is to perform the following operation on 4x4
matrices:

D = A × B + C

In this formula, the inputs A and B are FP16 matrices, while the input and
accumulation matrices C and D may be FP16 or FP32 matrices

Figura 9: How an NVIDIA tensor core operates on 4x4 matricesAlberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 35 / 36



Tensor Cores

Tensor Cores

Figura 10: 3D
illustration of the action
of a tensor core

The two matrices to be multiplied, A and B, are depicted
outside the central cube (note, matrix A on the left is
transposed)

The cube itself represents the 64 element-wise products
required to generate the full 4x4 product matrix

Imagine all 64 blocks within the cube “lighting up” at once, as
pairs of input elements are instantaneously multiplied together
along horizontal layers, then instantaneously summed along
vertical lines

As a result, a whole product matrix (A × B, transposed) drops
down onto the top of the pile, where it is summed with matrix
C (transposed), outlined in white

Upon summation it becomes the next output matrix D and is
pushed down onto the stack of results

Prior output matrices are shown piling up below the cube,
beneath the latest output matrix D (all transposed).

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 36 / 36



Tensor Cores

Tensor Cores

Figura 10: 3D
illustration of the action
of a tensor core

The two matrices to be multiplied, A and B, are depicted
outside the central cube (note, matrix A on the left is
transposed)

The cube itself represents the 64 element-wise products
required to generate the full 4x4 product matrix

Imagine all 64 blocks within the cube “lighting up” at once, as
pairs of input elements are instantaneously multiplied together
along horizontal layers, then instantaneously summed along
vertical lines

As a result, a whole product matrix (A × B, transposed) drops
down onto the top of the pile, where it is summed with matrix
C (transposed), outlined in white

Upon summation it becomes the next output matrix D and is
pushed down onto the stack of results

Prior output matrices are shown piling up below the cube,
beneath the latest output matrix D (all transposed).

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 36 / 36



Tensor Cores

Tensor Cores

Figura 10: 3D
illustration of the action
of a tensor core

The two matrices to be multiplied, A and B, are depicted
outside the central cube (note, matrix A on the left is
transposed)

The cube itself represents the 64 element-wise products
required to generate the full 4x4 product matrix

Imagine all 64 blocks within the cube “lighting up” at once, as
pairs of input elements are instantaneously multiplied together
along horizontal layers, then instantaneously summed along
vertical lines

As a result, a whole product matrix (A × B, transposed) drops
down onto the top of the pile, where it is summed with matrix
C (transposed), outlined in white

Upon summation it becomes the next output matrix D and is
pushed down onto the stack of results

Prior output matrices are shown piling up below the cube,
beneath the latest output matrix D (all transposed).

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 36 / 36



Tensor Cores

Tensor Cores

Figura 10: 3D
illustration of the action
of a tensor core

The two matrices to be multiplied, A and B, are depicted
outside the central cube (note, matrix A on the left is
transposed)

The cube itself represents the 64 element-wise products
required to generate the full 4x4 product matrix

Imagine all 64 blocks within the cube “lighting up” at once, as
pairs of input elements are instantaneously multiplied together
along horizontal layers, then instantaneously summed along
vertical lines

As a result, a whole product matrix (A × B, transposed) drops
down onto the top of the pile, where it is summed with matrix
C (transposed), outlined in white

Upon summation it becomes the next output matrix D and is
pushed down onto the stack of results

Prior output matrices are shown piling up below the cube,
beneath the latest output matrix D (all transposed).

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 36 / 36



Tensor Cores

Tensor Cores

Figura 10: 3D
illustration of the action
of a tensor core

The two matrices to be multiplied, A and B, are depicted
outside the central cube (note, matrix A on the left is
transposed)

The cube itself represents the 64 element-wise products
required to generate the full 4x4 product matrix

Imagine all 64 blocks within the cube “lighting up” at once, as
pairs of input elements are instantaneously multiplied together
along horizontal layers, then instantaneously summed along
vertical lines

As a result, a whole product matrix (A × B, transposed) drops
down onto the top of the pile, where it is summed with matrix
C (transposed), outlined in white

Upon summation it becomes the next output matrix D and is
pushed down onto the stack of results

Prior output matrices are shown piling up below the cube,
beneath the latest output matrix D (all transposed).

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 36 / 36



Tensor Cores

Tensor Cores

Figura 10: 3D
illustration of the action
of a tensor core

The two matrices to be multiplied, A and B, are depicted
outside the central cube (note, matrix A on the left is
transposed)

The cube itself represents the 64 element-wise products
required to generate the full 4x4 product matrix

Imagine all 64 blocks within the cube “lighting up” at once, as
pairs of input elements are instantaneously multiplied together
along horizontal layers, then instantaneously summed along
vertical lines

As a result, a whole product matrix (A × B, transposed) drops
down onto the top of the pile, where it is summed with matrix
C (transposed), outlined in white

Upon summation it becomes the next output matrix D and is
pushed down onto the stack of results

Prior output matrices are shown piling up below the cube,
beneath the latest output matrix D (all transposed).

Alberto Paoluzzi – Lecture 18 Parallel and Distributed Computing Wed 27-04-2022 36 / 36


	GPU Characteristics
	Threads and Cores Redefined
	SIMT and Warps
	Kernels and Streaming Multiprocessors (SMs)
	Memory Levels
	Memory Types – 1/2
	Volta Block Diagram
	Tensor Cores

